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PRECEDING F_GE BLA/_K NOT FILMED

INTRODUCTION

This report summarizes the results of a study performed for

the Jet Propulsion Laboratory (JPL) under contract 958596.

The overall goal of this study was to develop new concepts and

technology for the Comet Rendezvous Asteroid Flyby (CRAF),

Cassini, and other future deep space missions which maximally

conform to the Functional Specification for the NASA X-Band

Transponder (NXT), FM513778 (preliminary, revised July 26, 1988).

The study is composed of two tasks.

The first task was to investigate a new digital signal

processing technique identified in a previous program, "A

Transponder Study" (contract no. 958377). This technique involves

the processing of 1-bit samples and has the potential for

significant size, mass, power and electrical performance

improvements over conventional analog approaches. The entire X-

band receiver tracking loop was simulated on a digital computer

using a high-level programming language as shown conceptually in

Figure A. The approach shown in this figure had the best

performance in terms of size, mass, power and cost of all those

analyzed in the "A Transponder Study" final report. Simulations

on this "software breadboard" showed the technique to be well-

behaved and a good approximation to its analog predecessor from

threshold to strong signal levels in terms of tracking-loop

performance, command signal-to-noise ratio and ranging signal-

to-noise ratio. The successful completion of this task paves the

way for building a hardware breadboard, the recommended next step

in confirming this approach is ready for incorporation into

flight hardware.

The second task in this study was to investigate another

technique identified during the "A Transponder Study" program. It

was shown in the "A Transponder Study" final report that a

substantial size, weight and power savings could be obtained by

using sampling techniques to implement down-conversion mixers.

This sampling mixer approach is also shown conceptually in Figure

A. The approach provides considerable simplification in the

synthesis of the receiver first LO over conventional phase-locked

multiplier schemes and in this block diagram approach, provides

down-conversion for an S-band emergency receive mode without the

need of an additional LO. The objective of this study was to

develop methodology and models to predict the conversion loss,

input RF bandwidth and output RF bandwidth of a series GaAs FET

sampling mixer and to breadboard and test a circuit design

suitable for the X and S-band down-conversion applications shown

in Figure A. Considerably more effort than planned was required

to develop models and methodology to predict sampling mixer

performance. This was primarily due to the non-linear nature of

the sampling mixer which required lengthy time-domain SPICE

analysis and the immaturity of present day GaAs FET switching

models. Models and methodology sufficient to match test results

obtained on a existing L-band sampling mixer circuit were

ii





developed and additional circuit modifications were found which
give a flat IF passband. Analysis of X-band sampling mixer
circuits based on the L-band model suggests that an
implementation with the conversion loss of a traditional diode
mixer can be achieved. The study was terminated by JPL at this
point when it became apparent that a breadboard could not be
built with the remaining funds. Further work done during the
preparation of this report shows that X-band sampling mixer
implementations will likely require Microwave Monolithic
Integrated Circuit (MMIC) or hybrid Microwave Integrated Circuit
(MIC) technologies to achieve the required low values of
parasitic inductance and capacitance. These realizations would
have been beyond the scope of the original funding. Further work
to build an X-band MIC hybrid sampling mixer is recommended as
the most cost effective way to develop this important technology
into flight readiness.

This report is divided into two sections. Part A describes
the simulation model and analysis results for the software
breadboard task. Part B describes the methodology, models and
analysis results for the sampling mixer task. Conclusions and
recommendations for further work can be found at the end of each
part, as applicable.
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I. Introduction

In this report, a summary of the testing of a software

breadboard of the digital signal processing technique developed in

the previous program, "A Transponder Study," (contract no. 958377)

will be presented. The digital signal processing involves using

a 1 bit analog-to-digital (A/D) converter to sample the input

signal, and then processing these samples using digital techniques.

A block diagram of the proposed circuit is shown in Fig. i.
The software breadboard is a Monte Carlo simulation of the

block diagram of Fig. 1. The analog signals in the block diagram

were represented using double precision floating point variables,

and the digital signals in the block diagram were represented using

integer variables whose word size corresponded to the hardware

implementation.

The goals of this simulation study include verifying the

results of "A Transponder Study" (ATS), as well as investigating

some areas of concern which were not thoroughly analyzed in the

study. The results of ATS which will be verified are:

a) The signal-to-noise (SNR) degradation from using i bit
sampling, and

b) The linear response of the 1 bit A/D for negative SNR.
The areas of concern which were identified in ATS include:

a) At positive SNR levels, what are the effects of the 1 bit

nonlinearity on command and ranging intermodulation?

b) At positive SNR levels, what are the effects of the I bit

nonlinearity on the phase-locked loop transient behavior?

c) What are the effects, and what trade-offs can be made on

the VCO phase jitter due to the digital-to-analog
converter?

The outline of this report is as follows: in Section II, a

description of the program used to perform the Monte Carlo

simulation of the block diagram of Fig. 1 will be given. This

section will also discuss some of the models against which the

outputs of the simulation program were compared. In Section III,

the results of the simulation study will be given, and in Section
IV, conclusions and recommendations will be discussed.

II. Simulation Program

A. Program Description

As stated in the introduction, the simulation program is a

software implementation of the block diagram of Fig. 1. For this

reason, the functions of the block diagram will be discussed, and

their software implementations will be noted.

The input signal is assumed to be a sine wave phase modulated

by both command and ranging tones. The input signal takes the
form:

s(t) - A cos(wot + IRc cOSWct + Br cOSWrt) (i)

where, unless otherwise noted,
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f0 - carrier frequency - 5*FI

F1 - 9.56558642 MBz

Bc - command modulation index - 0.9 rads

fc " command frequency - 16 kHz

Br - ranging modulation index - 0.785 rads

fr - ranging frequency - 1 MHz

Zero mean, Gaussian noise is added to the input signal.

generator has a variance of i, so that

The noise

0 2 - No B - 1 (2)

where B is the Nyquist rate which is equal to one half the

simulation sampling frequency (i.e., 16*FI). Note that the input

signal-to-noise density, which is an input parameter to the program

is given by

A 2 A 2 B

SND - - dB-Hz. (3)

2 No 2

The input signal and noise are filtered by a 2 pole digital

Butterworth filter. The filter's magnitude and phase responses are

shown in Figs. 2 and 3, respectively. The filtered signal is then

sampled by a 1 bit A/D whose output is +i if the signal is greater

than zero, and -I if the signal is less than zero.

The digitized samples are then converted to baseband by

inverting the sign of every other pair of samples. The odd and

even samples are then separated into I and Q channels,

respectively. The I and Q channels are filtered by integrate and

dump (I/D) filters of length 'ncount'. Unless otherwise noted,

'ncount' is set to 256, so that the two-sided noise bandwidth of

the I/D filters is

4*FI

B, = 75 kHz. (4)

2*ncount

Note that this value of 'ncount' requires a 9 bit word at the

output of the I/D filter (-256 -> 255). A separate I/D filter is

used in the Q channel as the ranging filter. The length of this

filter is equal to 'lcount' which unless otherwise noted is set to

8. This value results in a noise bandwidth of

4*FI

B. - = 2.A M_z. (5)

2*Icount

This value of 'icount' will give approximately 3 dB of attenuation

to a 1 MHz ranging tone.

The output of the in-phase I/D filter is sent to a coherent

automatic gain control (AGC) and then to a final I/D filter whose

output gives the coherent amplitude detection (CAD). The length

of the final I/D filter is equal to 'jcount' (nominally equal to

A3
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I0), so that the noise bandwidth of the CAD output is

4*FI

B. - = 7.5 kHz. (6)
2*ncount*icount

The CAD signal is at baseband, so that the SNR ratio of this output

can be calculated by finding the sample mean and sample standard

deviation (described in the next section) directly.

The output of the quadrature I/D filter is also AGC'd. The

AGC output would normally be bandpass filtered and sent to the

command detection unit (CDU). However, in the software breadboard

we are interested in obtaining statistics of the command signal.

Therefore, we instead mix the command signal to DC and low pass

filter the mixer output. The magnitude response of the digital low

pass filter is shown in Fig. 4. Note that the two-sided noise

bandwidth of this filter is 2 kHz. The estimated command signal-
to-noise ratio is obtained from the samples output from the low

pass filter.

A similar down-convert and low pass filter operation is used

on the ranging filter output. The magnitude response of the

ranging low pass filter is shown in Fig. 5, note that its two-

sided noise bandwidth is 20 kHz. The estimated SNR of the ranging

signal is obtained from the samples of the low pass filter output.

The quadrature I/D filter output is used as the phase error

in the phase-locked loop (PLL). A block diagram representation of

the PLL is shown in Fig. 6. This linear model will be used to

obtain baseline (phase and frequency) step responses with which to

compare the outputs of the software simulation. A z-transform

representation of the PLL loop filters is shown in Fig. 7. Note

that 'kl_sel' and 'k0_sel' are selectable integer gains used to set
the response of the loop filter. Also note that this digital

filter approximates an analog integral plus proportional loop
filter. In addition to 'kl sel' there is also an additional

effective gain of 'KI_SHIFT'. Therefore, the total gain of this
branch is given by

-KI_SHIFT

kl_galn - kl_sel * 2 (7)

The shift in (7) is necessary to insure that 'car_spe' (see Fig.

l) is a 20 bit word.

The 20 bit word, 'car_spe' is input to the interpolator, whose
function is to reduce the number of bits down to that needed by the

digital-to-analog converter (DAC). The update rate of the

interpolator and, therefore, the DAC is Fl/mcount. For the nominal

value of 'mcount' - 2, this update rate is approximately 4.8 MHz.

The output of the DAC is low pass filtered and subsequently input

to the VCO to close the loop. Note that although the VCO puts out

a frequency which sets the A/D sampling rate, it is possible to

determine the effective phase of the VCO. This effective VCO phase

is just the carrier phase at the (VCO) sample times.

The preceding discussion has been a brief summary of the

operation of the software breadboard. In the following section we

A6
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will outline the methodology of testing the breadboard to insure

that it accurately reflects the hardware.

B. Software Breadboard Analysis

1) Introduction

In order to validate the integrity of the software breadboard,

we need to develop some (possibly linearized) models of the

breadboard and then compare the software simulation outputs to the

outputs of these models. Three models which will be considered

here to predict (and compare) the performance of the software
breadboard are:

a) A linearized digital phase-locked loop [BOMB7] model which

will be used to predict the step response and stability

of the PLL,

b) An equivalent analog PLL model which will be used to

predict the frequency acquistion of the PLL, as well as

the phase jitter of the loop, and

c) A statistical model of the output signal-to-noise ratio

based on coherent 1 bit samples of the received signal

plus noise.

The following subsections will discuss these models in more detail.

2) Digital Phase-Locked Loop Linear Model

In this section the z-transform model of the phase-locked loop

used in the software breadboard will be given. For more background

on this model or for a survey of digital PLLs, in general, see

[BOM87] and [LIN81].

The block diagram of the digital PLL was given in Fig. 6. The

loop filter was given in Fig. 7. For our analysis, we will model

the detector gain as the signal level output from the 1 bit A/D

times the I/D filter DC gain (i.e., 'ncount'):

KDE T - (output signal level) • ncount (8)

The output signal level can be predicted from the input signal

level and the input noise variance am [ATS89]:

(9)

where A is the amplitude of the input mlgnal, and o is the standard

deviation of the input noise.

The interpolator will be modeled as a straight gain of the
form

-(INT_SHIFT)

KIN T - 2 (I0)

similarly, the DAC will contribute a gain of the form

All



-(dac_blts I)
KDAC - 2 volts/blt (II)

We will assume that the cut-off frequency of the DAC filter is

comfortably above the open loop bandwidth of the loop and can

therefore be ignored. We can group all of these gains together to
get

K - KDE T * KIN T * KDA C (12)

The VCO gain is given in units of rad/s/volt.

function of the VCO is [BOMB7]

The transfer

KVC 0 * T
V(z) - (13)

z - 1

where T (= ncount/2/F1) is the sampling time of the loop. Using
the above definitions, and referring to Figs. 6 and 7, a set of

open loop discrete time state equations can be written for the

loop:

x(k+l) - A*x(k) + B*u(k),

y(k) - C*x(k) + D*u(k) (14)

where the state coefficient matrices are given by

a mm

li 0 0 0

1 0 0

*Kvc 0 T*Kvc 0 0 01 1
, B-

K*kl_s •1
0

T*Kvco*k0_s eI*K

C - [0 0 1 I], D- [0] (15)

the system equations were given in state variable form instead of

transfer function form because the control system analysis package

(i.e., MATLAB) we will be using prefers the state equation form.

For example, to obtain the open loop bode plot for the digital PLL,

the following MATLAB commands would be issued [MAT87]:

w - logspace(-l,pl);
[mag,phase] - dbode(A,B,C,D,l,w);

loglog(w,mag); (16)

once the state coefficient matrices have been defined, MATLAB can

also be used to find the impulse, step, and ramp responses as well

as finding gain and phase margins of the loop.

3) Analog Phase-Locked Loop Model

The equivalent analog model of the PLL is shown in Fig. 8

[BOMB7]. The following approximate relationships exist between the

A12
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components of the analog and digital PLLs:

Wn mm ] 1/2
Kvco*K*kl_gain

P

T

kO_sel

2

KVco*K*T

kl_galn

1/2

(17)

It is also well-known that the one-sided noise bandwidth of this

second-order loop is

n{ l}- -- C • -- (I8)
BL 2 4C

The VCO phase variance of the analog PLL is [ZIE85]:

2*No*B L
2

Oe - (19 )
A 2

This variance will serve as a baseline against which the digital

PLL will be compared. We expect, in general, the phase variance

of the digital PLL to be higher than (19) predicts because of the
additional quantization noise.

We will also use the analog PLL to predict the frequency
acquisition of the loop. During frequency acquisition, the PLL is

known to operate outside the linear range of the phase detector.

The loop's response can be written in terms of the following

nonlinear ordinary differential equation (ODE) [BLA76]

d2_ d$

TX + K*_2 cos{ -- + K sin_ - 0 (20)
dt 2 dt

where,

K 2C

T, - --, T2 - (21)
Wn 2 Wn

and _ is the phase error. If we express (20) as a set of two

coupled ODEs, the system can be solved numerically (as a function
of time) using the Runge-Kutta routine on MATLAB. One such set of
equations is

A14



XI

-K'T2 K

- -- x, cos(x2) - -- sin(x2)
T1 Tl

xz - x, (22)

where x2 = #, the phase error. MATLAB returns a set of state

vectors which can be plotted against time in order to observe

frequency acquisition of the analog PLL.

4) Statistical Noise Model

a) SNR calculations

The model to be used for the prediction of the output signal-

to-noise ratio is shown in Fig. 9. Only the in-phase channel (CAD)
is being considered. Implicit in this model is the fact that the

PLL is in lock, so that the input signal is being coherently

sampled at the peaks of the sine wave. This model was analyzed in

[ATS89], so we give only a brief summary of the results of that
study here. Note that the SNR results were derived under the

assumption of small input SNR, and will therefore only be valid as
long as this assumption holds true.

The mean value of the signal output from the I/D filter is
given by

M

_ U
y - /. 5

i-i

- M*D (23)

where D is the mean value of the signal component out of the 1 bit

sampler. This mean value can be expressed in terms of the Q()
function as

D - 1 - 2*_T }
(24)

where o is the standard deviation of the input noise.

variance out of the I/D filter is given by

The noise

M M

2
Oy 2 - -- /. /. 2 sin'*[r.(i-J)] sin'*[r.(i-J-l)]

I-i J-I
sin-* [r.(i- J+l) ] (25)

where r.(i) is the normalized autocorrelation of the input noise:
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Rn(i)

r.(i) :- (26)
o 2

whose form is dependent on the 1 bit sampler pre-filter [ATS89].

b) Modulation of input signal

In order to calculate output SNRs, we need to know how much

signal power is in each of the modulating signals. The input
modulated signal is of the form

s(t) - A cos(wot + Bc cOS_ct + Br cOSUrt ). (27)

For coherent sampling, the signal in the I channel takes the form

s(t) - A cos(i2_ + Bc coS_Ucit s + Br cOS_rits)

- A cos(B c cOSWcit s + Br cOS_rits)

- A cos(B c cOS_cits)*Cos(B r coS_Urits)

- A sin(B c cOSWcits)*Sin(B r cOSWrits) (28)

The cosine and sine functions in (28) can be expanded in terms of

a Bessel series, see, for example, [ABR72]. From this expansion
we can calculate the signal level of the various harmonic

components. Table 1. summarizes the signal components for a

command modulation index of 0.9, and a ranging modulation index of
0.785.

F_equency

0

_r + WC

w r +- 3w c

2w c

4w c

Table 1. I Channel Frequency Components

Coeffici@nt

J0 (Bc)J0 (B r)

2Jr (Bc)J, (Br)

2Jr (Br)Js (Bc)

-2J0 (Br)J_ (Bc)

2Jo (Br)J4 (Bc)

Power [CMD mod=0.9, rano@mod=0.785)

-3.25 dB

-10.61

-39.61

-15.85

-51.29

A similar development for the Q channel results in Table 2.
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Table 2. O Channel Freuuencv Components

Freuuenc7

_C

3_ c

_r

3_ r

_r ± 2Wc

Coefficien_

2Jo(Br)J, (Bc)

-2J0(Br)J,(B c)

2J0(Bc)J, (B r)

-2J0(Bc)J,(B r)

-2J, (Br)J_(B c)

Power (CMD mod=0.9, ranqemod=0. 785)

-3.20 dB

-32.21

-4.64

-36. i0

-23.26

These tables will be referenced later when SNR data is presented.

c) SNR estimation from simulation data

The output from the Monte Carlo simulation will be used to

estimate the output SNRs. In order to make these estimations, we

shall use the sample mean and sample standard deviation [NET85]:

Y

n

/_.. y,
t-1

n

(29)

Oy -

n

/ (y,
i-i

n-I

i12

so that the estimated signal-to-noise ratio is

(30)

m

SNRes c - 20*log (31)

Oy

These estimators are good for Gaussian data, which we will assume

to have under a central limit theorem [BEA88]. The reference,

[NET85], gives formulas for obtaining confidence intervals for the

above estimators. In the simulation program, samples are taken of

the outputs of the digital filters, and then (29) through (31) are

used to estimate the SNRs (for CAD, CMD, and ranging) from these

AI8



samples.

d) Ranging phase estimator

In order to determine the ranging phase delay of the digital

signal processing, a maximum likelihood (ML) estimator is used to

determine the phase of the output ranging signal. The ML estimator

for a signal in white Gaussian noise is the solution of [WHA71]

T A

^ 8s(t,e)It<c) s(c,e)]
0 8e

dc - 0 (32)

A

where r(t) is the signal plus noise, and e is the estimate of the

phase. Using

A

s(c.e) - coS(_rC + e) (33)

and substituting into (32), the phase estimate is found to be

A

e - Can-*

T

- f r(C) sln,.,rCdC

0

T

_r(c) cOSWrC dc
0

(34)

The Cramer-Rao lower bound on the variance of this estimator is

A s T}-I
oe2 >_ --

No
(35)

Note that an ML estimator asymptotically approaches the Cramer-

Rao bound on the variance [WHA71]. In the simulation program, the

output of the ranging filter is multiplied by the sine and cosine

of the accumulated ranging phase. These products are then summed

to approximate the integrals in (33), and the phase estimate is

obtained from the arctangent as in (33).

5) Conclusions

In this section some models were presented to predict the

performance of the software breadboard. These models are not only
important as a check on the accuracy of the software

implementation, but they also give baselines against which the

breadboard can be compared. In the next section, the results of

AI9



testing the software breadboard will be given, and comparisons will
be made against the models we have presented here.

III. Software Breadboard Evaluation

A. Simulation of the Carrier Loop

1) Introduction

It was felt that the testing of the software breadboard

carrier loop should be done first for the following reasons:

a) Testing of the carrier loop should give the most

thorough check on how accurately the software matches
the hardware, and should therefore be done prior to

other testing.

b) Correct operation of the carrier loop is essential for

proper functioning of the receiver.

The loop will be tested by verifying that the phase step response

matches that of the linearized model for negative SNR (at the A/D

input). Once the loop has been tested under this condition,
positive SNR cases will be considered, and conclusions will be

drawn. In addition to the phase step response testing, the

frequency acquisition performance of the loop will be considered

for both the weak and strong signal cases.

Unless otherwise noted, the loop filter gains will be constant

for all testing. These loop filter gains were selected to meet the

specifications for the NASA X-band transponder (spec. no. FM

513778) at the threshold signal level (signal to noise density =

15.4 dB-Hz). The following loop gains were obtained to meet the

specification requirements:

k0 sel = i0

kl sel = 3

K1 SHIFT = 10 bits

KIN T = 2-I0

K_C = 2-0CO = 1570796

The detector gain for this input signal level can be found from (8)

and (9) to be:

KDE T = 0.7607

so that

K s 1.45,10 -6

Substituting these values into

parameters were obtained

(17) and (18) the following

wn = 22.3 rad/s

C = 0.51

BL = 11.2 Hz

A20



2) Phase Step Response of Carrier Loop

a) Negative SNR phase step response

The simulation program was operated with a signal-to-noise

density of 60 dB-Hz at the input to the A/D prefilter. The SNR at

the output of the 5 MHz bandpass filter is approximately -7 dB.

The loop was initialized with the carrier phase in lock. After 1

ms of operation, the input carrier phase was stepped by _/4

radians. For this input SNR, the loop parameters are found from

(17) and (18) to be:

w. = 282 rad/s

C = 5.8

B L = 822 Hz

Fig. 10 shows the phase step response of the simulation program

under the above conditions. Fig. 11 gives the comparable phase

step response for the linearized digital model of Fig. 6. Note

that except for the absence of noise in the linearized model

response, the two curves agree quite well. Fig. 12 shows the phase

step response of the simulation program with the carrier modulated

by both command and ranging tones. The phase step response for

this case also looks normal, although the response is slightly

slower due to the 3.25 dB decrease in detector gain (cf. Table i).

Note also the presence of the command subcarrier in the output

response.

b) Positive SNR phase step response

The phase step response for neqative SNR agreed quite well

with the linearized model. In this subsection step responses will

be generated for positive SNR conditions where it may not be

justified to assume a linearized model. The first case considered

will have an input signal-to-nolse density of 80 dB-Hz. This value

translates into an SNR of 13 dB at the A/D input.

The simulation output for the 80 dB-Hz case is shown in Fig.

13. At this high SNR level, the output of the 1 bit A/D is

dominated by the signal, so that the detector gain is theoretically

equal to 'ncount' - 256. Fig. 14 shows the linearized model step

response for this value of detector gain. The linearized model

shows a much slower step response than the simulation output. It

was hypothesized in [ATS89] that at strong signal levels the S-

curve of the phase detector would no longer be sinusoidal and

consequently the detector gain would increase beyond its predicted

level. Fig. 15 is a result of trylnq to quantify this increased

detector gain. Detector gains were chosen using trial and error

in the linearized model in order to achieve a response similar to

the simulation response. The detector gain used in Fig. 15 is

equal to 2.5 times the nominal value. Fig. 16 is the simulation

response with command and ranglnq tones modulating the carrier.

Again the decreased carrier power results in a slower response than
the unmodulated case.

Fig. 17 is the simulation step response for an input signal-

to-noise density of I00 dB-Hz. This level of signal is the highest
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value expected to be seen by the receiver. The rise time for this

case is comparable to the 80 dB-Hz case. Therefore, it appears
that the detector gain levels off after 80 dB-Hz. Note, however,

the limit cycle oscillation (at approximately 19 kHz, 1/4 the loop

sampling rate) at this signal level. This limit cycle is a result
of the 'bang-bang' operation of the loop when little noise is

present. With command and ranging modulation, the limit cycle is

no longer present. The oscillation in Fig. 18 is actually the
command tone at 16 kHz.

3) Stability of the Phase-Locked Loop

The stability of the PLL can be analyzed using the linearized

model of Fig. 6. The major stability concern is that at strong

signal levels the detector gain will increase thereby increasing

the open loop crossover frequency. If this crossover frequency

approaches the sampling frequency of the loop, then the zero order

hold will start to contribute appreciable phase lag which will

decrease the phase margin of the loop.

As a baseline for comparison, the open loop magnitude and

phase responses of the loop at threshold signal level are shown in

Figs. 19 and 20. Note that the crossover frequency of this loop

is at approximately 4.3 Hz and that the open loop zero is at

approximately 3 Hz. The phase margin at crossover is about 53

degrees.

The corresponding plots for strong signal level are shown in

Figs. 21 and 22. The crossover frequency is at approximately 3

kHz. The open loop zero is so far below crossover that the slope

of the magnitude curve is -1 at crossover. The phase curve shows

that the zero order hold starts to contribute a phase lag at higher

frequencies, but there is still a more than adequate phase margin

of 83 degrees at crossover. Therefore, the stability of the PLL

is not a real concern at strong signal.

4) Frequency Acquisition of the Phase-Locked Loop

a) Negative SNR frequency acquisition

The simulation program was operated with a signal-to-noise

density of 60 dB-Hz at the input to the A/D prefilter. The loop

was initialized with the carrier phase in lock. After 1 ms of

operation, the input carrier frequency was stepped by 1 kHz. Note

that in the simulation plots, the carrier phase appears to reach

a steady state value of 0.3 radians. This is not really the steady

state phase error, but is a result of the process by which samples

of the output phase error were taken in the simulation program.

Of course, for a second order loop, the phase error would approach
zero.

In order to determine the process by which the loop acquires,

we plot the open loop frequncy response of this loop in Fig. 23.

Note that the crossover frequency is at approximately 600 Hz.

Therefore, we can predict that the loop will not acquire a 1 kHz

offset frequency without slipping cycles. Fig. 24 shows the

acquisition behavior of the simulation under the above conditions.

For comparison, Fig. 25 shows the theoretical acquisition of the

equivalent analog PLL. This figure was obtained by numerically
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solving (22). The equivalent analog PLL acquires sligthtly faster

than the software breadboard, but recall that the analog PLL
assumed a noise free model.

The approximate formula for acquisition time is given by

[BLA763

_u 2

- (36)
Tacq 2.C.t_ 2

which, for this loop gives

_Tac = 136 ms.q

This is approximately the time when the two loops stop slipping

cycles. The additional time is needed for the completion of the

frequency acquisition for the loop operating in the linear mode.

b) Positive SNR frequency acquisition

The simulation program was operated with a signal-to-noise

density of 80 dB-Hz at the input to the A/D prefilter. A frequency

step was input as in the 60 dB-Hz case. The open loop magnitude

response for this 80 dB-Hz case is shown in Fig. 26. The crossover

frequency is at 3 kHz. In generating this figure, the phase

detector gain was set 2.5 times higher than its nominal gain per

the results of the strong signal phase step response (cf. Fig. 15).

Fig. 27 shows the simulation response for a 2 kHz frequency step

input with Fig. 28 showing the equivalent analog loop response.

With the step frequency inside the crossover frequency of the loop,

one would expect that the loop would acquire without slipping

cycles, as in Fig. 28. However, the simulation does slip cycles

because of either the noise present in the simulation, or the phase

detector gain is lower than was thought. Figs. 29 and 30 show

cases where the step frequency (at 4 kHz) is beyond the crossover

frequency causing both loops to slip cycles before acquiring. The

discrepancy for this strong signal pull-in cannot be adequately

explained from the models developed.

5) Bandwidth Expansion of the Carrier Loop

One behavioral aspect of a phase-locked loop which needs to
be characterized is the bandwidth expansion as a function of

increasing SNR. In an analog loop, the expansion curve is directly

affected by the presence of an automatic gain control (AGC) or an

ideal limiter in front of the loop (see, for example, [BLA76] Figs.

9.2 and 9.3). Note that the expansion curves are nearly identical

for the AGC and the ideal limiter [BLA76]. Therefore, since the

block diagram of Fig. 1 uses a hard limlter as an analog-to-

digital converter, it is to be expected that the bandwidth

expansion of the software breadboard should be slmilar to the

analog PLL with AGC.

Unfortunately, it was found to be difficult to accurately
obtain the noise bandwidth of the software breadboard. One method

which was attempted involved frequency modulating the input
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carrier, and then plotting the loop response as a function of

modulation frequency (see, for example, [BLA76], Fig. 6.16). The

frequency response should peak at the loop's natural frequency,
which could then be used to calculate the noise bandwidth. This

approach was found to be infeasible because the response tends to

flatten out at large values of _ (i.e., large SNR) and therefore

did not give a clear indication of the natural frequency.

Another method for determining the bandwidth of the loop is

to plot the step response of the loop, and infer the loop bandwidth

from the shape of the step response. This method was felt to be

somewhat subjective, but should give an approximate value for the

loop bandwidth. Figs. 31 - 34 show phase step responses of the

software breadboard for different input SNRs. Also included in the

figures are step responses of the digital linearized model of Fig.

6. For the linearized model, the phase detector gain was selected

to give a close match to the simulation response. The fitted

linearized models can then be used to determine the loop

bandwidths. For signal-to-noise densities below 60 dB-Hz (-7 dB

SNR), the 1 bit A/D can be assumed to operate as a linear device

with the phase detector gain given by (8) and (9). From Figs. 31 -

34, and using (8) and (9), the loop bandwidth can be determined as

a function of input SNR. Fig. 35 shows a plot of this

relationship. The bandwidth at maximum SNR is approximately twice

what would be obtained with an analog loop with AGC.

The preceding results were obtained with no modulation of the

carrier. Figs. 36 - 39 show step responses with command modulation

of the carrier. Note that these plots indicate that these plots

indicate that the loop expands to a lesser degree with modulation

of the carrier. Fig. 40 is a plot of the loop expansion as a

function of input SNR obtained as above. Also shown in this figure

is the expansion which would be obtained with an analog loop with

AGC. Note that the two curves do not significantly differ.

6) Conclusions

The digital carrier loop as implemented in the software

breadboard performed very much like its analog equivalent. The

only real diffference occurred at strong signal levels (about 65

dB above the threshold level). At strong signal levels the

apparent phase detector gain was determined to be about 2.5 times

the predicted gain. This increased gain was estimated by comparing

the step response and frequency acquisition of the breadboard to

those obtained using equivalent models. The detector gain does

appear to level off at the value

KDMax - 2.5 * ncounn (37)

It achieves this gain at an input signal-to-noise density (at the

prefilter input) of 80 dB-Hz. The exact mechanism for this

increased gain is not precisely known. However, an increase in

phase detector gain does not appear to occur when modulation of the

carrier is present (see Fig. 40).
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B. Output Signal-to-Noise Ratios

The output SNRs for the coherent amplitude detection (CAD),

command, and ranging signals were estimated using the sample mean

and sample standard deviation as discussed in Section II.

Statistics were taken on the software breadboard for input signal-

to-noise densities ranging from 30 to 100 dB-Hz. The simulation
results are summarized in Table 3.

Table 3. OUtDUt SNRs

SNR CMD Range Output 1 Bit Mod. Filt. Calc. Simul

in Mod Mod BW Loss Loss Loss SNR SNR

30 dB-Hz 0.9 0.785 7.5 1.2- 3.25 0 -10.49- -10.2

(CAD) 1.5 -10.19

30 0.9 0.785 2.0 1.2- 3.20 0 -7.40- -8.7

(CMD) i. 5 -7. I0

30 0.9 0.785 20.0 1.2- 4.64 3 -22.15- -20.6

(RNG) i. 5 -21.85

50 0 0 7.5 kHz 1.2- 0 0 12.76- 14.0

(CAD) i. 5 13.06

50 0.9 0.785 7.5 1.2- 3.25 0 9.51- 10.7

(CAD) I. 5 9.81

50 0.9 0.785 2.0 1.2- 3.20 0 12.60- 12.1

(CMD) 1.5 12.30

50 0.9 0.785 20.0 1.2- 4.64 3 -2.15- -1.0

(RNG) 1.5 -1.85

60 0 0 7.5 kHz 1.2- 0 0 22.76- 24.4

(CAD) I. 5 23.06

60 0.9 0.785 7.5 1.2- 3.25 0 19.51- 20.7
(CAD) 1.5 19.81

60 0.9 0.785 2.0 1.2- 3.20 0 22.60- 21.4

(CMD) 1.5 22.90

60 0.9 0.785 20.0 1.2- 4.64 3 8.16- 8.9
(RNG) 1.5 8.46

80 0 0 7.5 1.2- 0 0 43.36- 83.1

(CAD) i. 5 43.66
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80 0.9 0.785 7.5 1.2- 3.25 0 40.11- 38.5

(CAD) I. 5 40.41

80 0.9 0.785 2.0 1.2- 3.20 0 43.20- 40.9

(CMD) 1.5 43.50

80 0.9 0. 785 20.0 i. 2- 4.64 3 28.76- 25.2

(RNG) 1.5 29.06

100 0 0 7.5 1.2- 0 0 63.36- N/A
(CAD) i. 5 63.66

100 0.9 0.785 7.5 1.2- 3.25 0 60.11- 42.2
(CAD) 1.5 60.41

100 0.9 0. 785 2.0 I. 2- 3.20 0 63.20- 55.4

(CMD) 1.5 63.50

I00 0.9 0. 785 20.0 i. 2- 4.64 3 48.76- 34.5

(RNG) i. 5 49.06

The calculated values for the output SNRs were obtained as follows

SNRcalc - SNRIn - 10*log(ou_put BW) Z(losses) (38)

and are given in dB. The 1 bit loss represents that predicted in the

report [ATS89]. This report predicted the losses for both an ideal and

single pole filter. Since in the software breadboard a double pole
prefilter is used, it was felt that the loss would lie between these two
values.

Of most significance in Table 3. are the results for the negative

input SNR cases, since at positive SNR levels (i.e., >65 dB-Hz), the

output SNR is well above the design threshold value. For this reason,

Table 4 gives 99% confidence intervals [NET85] on the results for the
30 and 50 dB-Hz cases.

Table 4. SNR 99% Confidence Interval_

SNR Siunal SamDle Mean Sample Std, # Data Points 99% SNR

30 CAD 25.77 83.26 5000 [-11.2 -9.28]

30 CMD 231.63 629.57 5000 [-9.68 -7.79]

30 Rng 0.0264 0.2821 5000 [-22.0 -19.4]

50 CAD 266.43 77.35 500 [10.6 10.9]

50 CMD 238.52 59.57 500 [12.0 12.1]

50 Rng 0.2544 0.2866 500 [-1.48 -0.608]

As can be seen from the table, we can have good confidence in our data
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for these cases.

C. Voltage Controlled Oscillator Phase Jitter

It is of interest to measure the jitter on the phase of the VCO in
order to determine the effects of the quantization noise on receiver and

transmitter specifications. The jitter will be estimated using the

sample standard deviation, (30). The interpolator at the input to the

DAC was shown in Fig. i. For the cases being considered, the

interpolator will feed back the I0 lower bits and send the higher bits

to the DAC. The jitter will be measured with 8 and I0 bits of DAC

quantization. The number of DAC bits will affect the DAC gain per (ii),

so that the loop filter will have to be adjusted accordingly to obtain

similar loop parameters. Table 5. summarizes the phase jitter results
obtained from the software breadboard.

Table 5. vco Phase Jitter

Analog Simulation

SNR CMD Range DAC Phase Phase

in Mod Mod Configuration Jitter* Jitter

50 dB-Hz 0. 0. 8 bit Interp. 2.8778 deg 3.0062 deg

rms rms

50 0. 0. I0 bit Interp. 3.1872 3.4354

60 0. 0. 8 bit Interp. 1.5529 1.8960

60 0. 0. i0 bit Interp. 1.7306 2.1848

80 0. 0. 8 bit Interp. 0.2251 0.8087

80 0. 0. i0 bit Interp. 0.2512 0.9736

i00 0. 0. 8 bit Interp. 0.0225 3.6382

I00 0. 0. i0 bit Interp. 0.0251 4.2002

*Note: This number changes from 8->10 bits because

BL changes due to the redistribution of loop gains

which are integer numbers.

Note that at negative SNRs, the jitter is only slightly greater than

that contributed by the input noise, but at positive SNRs, the

quantization noise tends to dominate. At the I00 dB-Hz level, the limit

cycle which was observed in Fig. 17 causes the high value of phase

jitter.
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D. Command and Ranging Intermodulation Effects

The predicted levels of the various frequency components which

would be output from a linear phase detector were given in Tables 1. and

2. The frequency components of the signals output from the software

breadboard of the 1 bit detector will be presented in this section. Of

particular interest will be the case of positive SNR where the 1 bit A/D

no longer acts like a linear device.

In order to observe the frequency spectra, a 1024 point FFT was

used to process the data at the ranging filter output. In addition,

another I/D filter of the same length as the ranging filter was added

to the I channel, and the output of this filter was also processed using

the FFT. The FFTs were performed over 20, 1024 point blocks of data,

and the magnitude spectrums of all the blocks were averaged in order to
reduce the noise variance in the FFTs.

Figs. 41 and 43 are the results of this FFT processing on the I and

Q channels, respectively. Figs. 42 and 44 are corresponding plots

assuming an ideal sampling phase detector. These plots were obtained by

normalizing the I channel DC level to 5.45 dB (see Fig. 41), and then

using Tables 1. and 2. to determine the other frequency components

relative to the DC value. In addition to the numbers given in the

tables, an additional 3 dB was subtracted from those tones near the

ranging frequency to account for the I/D filter roll off. Note that the

spectrums obtained using the FFTs give more qualitative results than

quantitative results since the amplitudes of the tones will depend on

the number of samples taken and the resolution of the FFT. However, as
can be seen, the theoretical and experimental spectrums show close

agreement for this 60 dB-Hz case.

Figs. 45 through 52 are comparable results for the 80 and 100 dB-
Hz cases. These spectra show that the sideband tones are definitely

higher than for the ideal phase detector. At these high signal levels,
the nonlinear nature of the 1 bit A/D causes intermodulation between the

command and ranging tones.

Finally, Fig. 53 shows the spectrum of the Q channel output focused

on the 16 kHz command tone. The spectrum of this figure was obtained

at the maximum signal level of i00 dB-Hz. This figure shows in detail

that there is no evidence of the 19 kHz limit cycle (cf. Section

III.A.2) with the command modulation on.

E. Ranging Filter Output Spectra

Since under normal operatlnq conditions, the carrier will not be

modulated by both command and ranqlnq tones, it is of interest to plot

the ranging filter output spectra in either the command or ranging mode.

To this end, spectra were obtained for various ranging frequencies and

modulation indices. Table 6 summarizes the spectrum plots which were

obtained using the software breadboard.
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Table 6, Spectrum Plots

SNR CMD mod CMD freq Range mod Range freq Fig. #
_mm

60 - - 0.785 1 MHz 54

I00 - - 0.785 1 MHz 55

60 - - 1.3 1 MHz 56

i00 - - 1.3 1 MHz 57

60 - - 0.785 100 kHz 58

100 - - 0.785 i00 kHz 59

60 - - 1.3 100 kHz 60

100 - - 1.3 100 kHz 61

60 - - 0.785 i0 kHz 62

I00 - - 0.785 i0 kHz 63

60 - - 1.3 I0 kHz 64

I00 - - 1.3 I0 kHz 65

60 - - 0.785 1 kHz 66, 67

I00 - - 0.785 1 kHz 68, 69

60 - - 1.3 1 kHz 70, 71

i00 - - 1.3 1 kHz 72, 73

In this table, the 60 dB-Hz cases represent linear operation of the 1

bit A/D, while the 100 dB-Hz cases represent maximum input signal level.

The ranging frequencies considered vary from 1 kHz to 1 MHz, with
modulation indices of 0.785 and 1.3 radians. Note that for a 1 kHz

ranging frequency, additional expanded plots are given in order to

resolve the 1 kHz tone at the output. In all cases where the input SNR

was equal to 60 dB-Hz, no harmonics of the fundamental frequency are

seen in the output spectra. However, at the 100 dB-Hz level, odd

harmonics of the fundamental frequency are clearly present in the

output. Note that at 1 MHz and 100 kHz ranging frequencies, aliasing

causes the higher harmonics to be folded back in at lower frequencies.

The frequency response of the linearized model of Fig. 6 can be

used to predict the response of the breadboard to different ranging tone

frequencies. Fig. 74 shows the phase detector output versus ranging
frequency for the linearized model. This figure was obtained under the

assumptions of strong signal and operation of the loop as in the

bandwidth expansion curve of Fig. 40 (modulation on). Note that Fig.

74 indicates that a 1 kHz ranging tone will be attenuated by 4 dB at

strong signal level. Little attenuation will be experienced by tones

at frequencies above 10 kHz.

F. Ranging Phase Delay

One of the principal advantages of using a digital receiver over

its analog equivalent is the reduction in ranging delay variations over

time and temperature. The delay experienced by the ranging signal is

caused by two separate filters (i.e., one analog, the other digital).

The first delay contributor is the analog bandpass prefilter, whose

phase response was shown in Fig. 3. For a 1 MHz tone, the phase delay

is approximately 0.58 radians. The second delay contributor is the

ranging I/D filter whose phase delay is
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Icount- 1

e - _r (39)
4FI

which, for 1count = 8, is equal to 1.15 radians. The magnitude and

phase responses of the ranging I/D filter are shown in Figs. 75 and 76.

The I/D delay will not be affected by temperature or aging of parts.

It is, however, tied to the carrier frequency and will therefore be

subject to doppler shifts. These shifts will be small with respect to
4F1 (the sampling time), and will also be predictable. For a 1 MHz

ranging tone, the phase delay through the entire circuit is

approximately 1.73 radians (or 275 ns).

One open issue in using the 1 bit processing scheme is whether the

ranging delay changes as a function of signal level when the SNR is

positive. In order to estimate the output ranging phase, the maximum

likelihood estimator of (34) was used on the software breadboard. Fig.
77 shows the result of this estimation for signal-to-noise densities of

60, 70, 80, 90, and 100 dB-Hz. Also shown in this figure are 1 sigma
bounds on the estimates obtained from (35). As can be seen from the

figure, the ranging delay does not appear to vary as a function of
signal level.

IV. Conclusions and Recommendations

In this report the testing of the software breadboard

implementation of a 1 bit digital receiver was presented. The results

of the Monte Carlo simulation were compared against equivalent models
in order to verify the accuracy of the simulation. The simulation

outputs compared quite well with the outputs of the models. In

addition, the simulation results showed good agreement with the previous
study, [ATS89].

The major goal of this study was to use the software simulation to

predict the performance of a hardware receiver at strong signal levels.

It is known that at positive SNR, the 1 bit A/D no longer acts like a

linear device. The question that needed to be answered was whether or

not this nonlinearity degraded the performance of the receiver beyond

acceptable levels. To this end, the performance of the phase-locked

loop was tested at strong signal levels. The loop was seen to track

phase steps, as well as acquire frequency offsets. The loop responses
compared favorably to the responses of linear models. It was also shown

that the increased phase detector gain at strong signal level did not
cause a stability problem.

With no modulation and positive carrler-to-noise ratio, the phase-

locked loop appeared to possess a limit cycle. A limit cycle is a

phenomenon which occurs in a control loop containing a nonlinearity
(i.e., the phase detector). Whether this limit cycle is a cause for

concern would have to be determined by JPL. Some methods for reducing
the effects of the limit cycle include: 1) changing the loop filter gain

constants at high SNR to reduce the loop gain, 2) changing the loop

sampling rate in order to change the frequency of the limit cycle, and

3) using a coherent AGC to reduce the loop gain at strong signal.

The 1 bit nonlinearity was seen to cause intermodulation of command
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and ranging signals at strong input signal levels. Loss of desired

signal was apparent. Whether this strong signal ranging performance is

affected by additional internal products is heavily dependent on the

deep space network (DSN) ranging demodulator design. This effect would

therefore require further evaluation by JPL.
Another issue of concern was the effect of the DAC quantization on

the phase jitter of the PLL. It was shown in this study that with only

8 bits of quantization, the jitter compared favorably with the

equivalent analog model, and that the quantization noise was

significantly below the thermal noise in the loop. Finally, it was

shown that the reduced dependence of the ranging phase delay on

temperature and aging effects continues to be a strong selling point of

the digital receiver, and that the ranging delay is not affected by

signal level.
Not tested in this study was the performance of the noncoherent

AGC. This AGC is shown in the block diagram of Fig. i. It was felt

that the AGC would have no impact on the testing that was performed.

In addition, since it is not clear whether a coherent AGC should be used

in lieu of the noncoherent AGC; the AGC performance should be evaluated

in a future study after a decision on which AGC should be used has been
made.

Some areas requiring further study include: i) selection of the

type of AGC, 2) inclusion of CDU functions into the breadboard, and 3)
eventual hardware breadboarding of the block diagram.
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PARTB

SAMPLING MIXER STUDY



I. IDEAL SAMPLING MIXER MODEL / PERFORMANCE

In this section an ideal model for the sampling mixer is developed,

and performance based on this model is predicted. Sections I, II and
III are written in MathCAD 2.09.

A. SAMPLING MIXER MODEL

Consider an ideal sampler in cascade with an ideal zero-order hold

(ZOH).

f >I IDEALR SAMPLER

f

S

I IDEALZOH

> f

IF

f

R

f

S

= RF Input Frequency

= LO (Sampling) Frequency

Assuming independance between the sampler and hold, it can be shown

that [i] the output spectrum of the sampler is

F (J2-£) = _f
i

n

Ins
nw_f

S

BI



for :

n = i to _.

._ = width of sampling interval

F(j2_f) = input RF spectrum

For a down-conversion mixer output frequency near dc, the loss of the

sampler is

L

L J3

The ZOH transfer function is found following the method outlined by

Schwarz [2]. Assume the input to the ZOH is a train of rectangular

pulses of width r and amplitude h. If T << (I/f) the rectangular
S

pulses can be approximated by impulses of weight h T. The output of the

ZOH is a pulse of width (i/f) and height h. Thus
S

Y (,:,))

H (_,) -

2 X(6))

1

rf

S

1

S

-j_.:,t

he dt

h'T,_'(t) dt

where &(t) is

0

the unit impulse function
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H

2
(j2_f)

F -j2_f 7

_j2_f]

r _j_f-

f

S

e

_f

l J_f -J_fi

f f

S S

- e

2J

f
$

I-J_fifs

The first two terms are the magnitude of H (j2_f) and the last term is

2
is the angle. The dc gain of the ZOH is

1
H (0) = lim - --

2 f_ 0 ff
S

hold time

sample time
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The loss of the ZOH can be expressed as

L = 201og
2

P r

sin

L'sj
_f

f

S

Thus the cascaded response of the sampler and ZOH is

I 'n ]1

r

sin

_Trf _

_f

£

S

z

F_ 1

2

This equation represents the best performance attainable with an ideal

sampling mixer consisting of an ideal impulse sampler cascaded with an
ideal ZOH.
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B. THEORETICAL PERFORMANCE

In this section an ideal or upper bound on performance is calculated

for the sampling mixer using the expressions derived in section

A to compare against the predicted circuit performance in section If.

The loss for an ideal sampling mixer was shown to consist of
two terms. The first term

LI= rf

S

sin(n_f _)

S

n_f

s

represents the loss of the sampler at an RF input frequency of nf .

S

This loss is virtually independent of IF frequency (ie constant over

all IF frequencies) for IF bandwidths << nf . The variables are:
S tl

n= harmonic of LO frequency which gives desired IF

when added or subtracted from the RF input

frequency

f = LO (sampling) frequency

s

T= width of sampling pulse

For exciter shown in Figure i nf =888FI. The loss is solely a

function of _. s s s

Let
n := 74

6

f := i14,84 i0

S

-12

:= ii0

0

i := 1 ..I00
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Neglecting the loss due to the .rf term in L1

S

L1 := 201og
i isin ._.f .r i "

in s 0 ]

n'_ fs -.r "i0 .1

LOSS

(dB)

L1

i

----._
"%1

-'--..°

..%

'..._

t.

'%

'%

_1

i

-20

0 i I00

(pS)
Figure 2 - Exciter First Term Loss vs Pulse Width

A similar situation exists for the receiver in Figure i, where:

n := 31

f

S

,r

0

:- 229.68"10

-12

:= i'I0

i := 1 ..i00

L1 := 20log
i

B7



LOSS

(dB)

L1

i

-I0

| --4--w.

"..

'\

%'_,.

'\,\

'k,

0 i , i00

(pS)

Figure 3 - Receiver First Term Loss vs Pulse Width

An L-band sampling mixer was breadboarded and tested recently on a
Motorola IR&D. The theoretical loss of this circuit is considered for

comparison. For this L-band sampling mixer:

n := 19

f

S

6
:= 81.92 10

q-

0

-12
:= 110

i := I ..300

isln _'fs 1"

i° o
L1 := 20 log ....

i n _ fs '_'0 '1
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LOSS

(dB)

L1

i

-4

!

'"L

",°.

"b.

I.

\
"t

0 i 300

•r (pS)

Figure 4

L-Band Sampling Mixer First Term Loss vs Pulse Width

The second ideal sampling mixer loss term was shown to De:

L2=

sin(_£/f )

l s

• f =f/f

S S
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This is the response of an ideal hold, where f and T are as

s

defined before and f is the IF frequency. For the exciter shown in
Figure i.

0

-12

:= 2010

f := 114.8410

S

i := 1 ..5

k := I ..I00

6

f := ii0

0

L2 := 201og

i,k

sin • k "

i T k f "_

0 0

GAI N

(dB)

60 ' i

L2

........ . .... .... ......

•".....

"°i

'....

|

"...

....... . ..... . .... |......

......

"" °t t,

.......... • .... ....... "° •.

"'°-.L. "'°
|

• .... -..
• .° ..

• --. ...o... "''°°.

.-.-._l,xl ......... ............. .... P I B II

• . .... .... "". -,.

-.•. -,
• ,.. .,

%..

..

i' -.
"•.

,. •
i

''% .

°'•.

".., •

"...,, --., ,,. .
o. . .

". "%. '1 ". " °i

'°. %.

i

°.. '.

20
0 k 100

• = 20 pS

T= 40 pS

• = 60 pS

_= 80 pS

T= i00 pS

IF FREQUENCY (MHz)

Figure 5 - Exciter Second Term Loss vs Pulse Width
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Thus the hold provides gain to counteract the sampler loss.

Expressing the cascaded loss of the sampler and hold in one

equation:

L=LI*L2= _f

S

sin(n_f T) sin(_f/f )

s S 1

n_f • =f/f _f

S S S

This is the loss at (f +/- nf ). For the exciter shown in Figure i :

R s

n :=74

f := 114.8410

S

i :- 1 ..5

T := 20'10

0

k := 1 ..200

-12

6

f := i i0

0

L := 20'log

i,k
sin[n_fs i'_0 ]

r f

sln k°Is
"i'_

0 0

"I
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LOSS

(dB)

L

(i,k)

.....:::::!!! .........._. , "-_ :C._....... ,"--:
-l- ,._ ; "\. " "--- -- -- --, -_.

"%-i " '" "

n_ p_ le

..".[i "

• .-.-- ---. _.
• -i • b .! , , b.- "'.

': " '.''I "" "

•.1.

..

.r= 20 pS

.. T= 40 pS

•=_ 60 pS

.... 7= 80 pS

T= i00 pS"

I
-80 .... , , . ,

0 k 200

IF FREQUENCY (MHz)

Figure 6 - Exciter Sampling Mixer Loss for n=74

The 8FI IF has too much loss due to its proximity to f . This can be

s
remedied by setting f =24F1 and n=32.

S

f := 229.68-10

S

n := 32

L := 20"log

l,k I .

I'l0

sin "k --

2

n'_ kf "iT

0 0
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LOSS

(dB)

L

(i,k)

---.--°.

• -m... °_

I I I
I I I

T= 20 pS

• = 40 pS

• = 60 pS

• = 80 pS

• = i00 pS

-3O

0 k 200

IF FREQUENCY (MHz)

Figure 7 - Exciter Sampling Mixer Loss for n=32

Thus a 60 ns gate time is required of the sampler for a 5 dB loss.

Looking more closely at the 8FI ÷/-2FI response for the phase
modulator application:

LOSS

(dB)

0

L

(i,k)

-2O

• " " " " • ' , i

|

i

i

| ,

i |

i

' " 'i |

, |
. . . . . .

i i

50 k i00

r= 20 pS

=r 40 pS

-r= 60 pS

¢= 80 pS

• = I00 pS

IF FR_UIMCY (MHZ)

Figure 8 - Exciter Sampling Mixer Loss for n=32 at 8Fl+/-2FI
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This plot indicates about 1.5 dBpp over 8FI +/- 2FI which may be

adequate for the modulation response of the phase modulator, as phase

modulation is performed within the PLL in Figure i. A flatter

response would be more desireable however.

For the receiver application in Figure i :

n := 31

f := 229.68 i0

s

i := 1 ..5

-12

:= 20"10

0

k := I ..200

6

f := 1 I0

0

L := 201og

i,k in[n _ fs i T0 ]

F f I

' °1sin [Trk fs

2

n _ k f i r

0 0
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LOSS

(dB)

L

(i,k)

-2O

_-- I I ! r u I I ! u ! I ! 1 I ! I ! l ! I

.u =j .._. ----.

IF FREQUENCY (MHz)

Figure 9 - Receiver Sampling Mixer Loss for n=31

The flatness is adequate for the 5FI IF of Figure 1.

•= 20 pS

•= 40 pS

•= 60 pS
etc.

Computing the L-band IR&D sampling mixer response for a check:

n :=19

f

S

6

:= 81.9210

i := i ..3

T

0

:= I0010

-12

k := 1 ..50

6

f := l'10

0
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L

i,k

:= 20 •log

F

sin In'w fs I .

F f 7

Lsin 'k

2

nw k-f i-v

0 0

LOSS

(dB)

L

!

• . . . . . . . .

• . . o . . . . .

.... ° . . . .

|

0 k 50

(i,k)

-I0

IF FREQUENCY (MHz)

Figure I0 - L-Band Sampling Mixer Loss for n=19

T= i00 pS

=r 200 pS

• = 3O0 pS

Thus, the L-band IR&D sampling mixer could achieve a 35 Mhz 3dB bandwidth

but measured data shows 2.5 Mhz is the best performance achieved

to date. Techniques to further flatten the IF frequency response are
discussed in section C.
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C. IMPROVING IF RESPONSE

The IF response of the sampling mixer generally follows a sin x / x

shape as shown in the previous section. Circuit realizations of the

sampling mixer can be made to behave as second - order systems as

shown in [3]. The frequency response of the second - order system can
be used to counteract the sin x / x response and provide a flat IF

response if the natural frequency and damping factor are chosen

correctly. Consider the response of the circuit in Figure Ii below to
the unit step function u(t) from t z 0 to t z T.

R L

u(t) T

I u(t)-u(t-T)_--_

c v (t)
o

>

Figure ii - Second - Order System

The output frequency response of this circuit to an input step
function of amplitude 1 is

1 1

sC 1 LC 1
V (s) = - = -

o 1 s 2 FR_ 1 s

R + sL + -- s + _LJS + --sC LC

Define

1

= U-- = natural frequency; B =
C 4LC

damping factor

V (s) =
0

2 2

c 1 c

2 F_I 2 S 2

S + _J S + (O SC + 2_I(OC IS + 6Jc

1

S
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The time domain response is found by taking the inverse Laplace

transform of V (s)

o

I'l" [!! ,]
i I - _ Jt +

V (t) = 1 - e sin [_'co
,1 - .2

In general V (t) is a damped sinusoidal response as shown in

o

Figure 12.

V (t)

o

8 • 8 0 • • _ 0 D M U m

Normalized time _ t

c

Figure 12 - Response of Second - Order System
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We want to solve for _ and E_,such that V (t) = 1 at t = f.

C 0

Setting V (_) = 0 in the previous equation we find

[j2]
o 1 - . _ + acos(.B) =n-

C

The "zero" we want is at n=l, therefore

C

- acos (.8)

This equation for _ and the one derived previously for _ can be used
c

as design equations to flatten the sampling mixer IF response as shown
in section II.
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II. CIRCUIT ANALYSIS MODEL/ PERFORMANCE

In this section the circuit analysis model for a series GaAs FET

sampling mixer is developed and performance based on this model is

predicted. Predicted performance for an L-band sampling mixer is

compared with measured data. Analysis methodology is also discussed.

A. APPROACH

The actual design approach and methodology used to develop the

sampling mixer model differed significantly from that proposed.
At the time the proposal was written it was planned to breadboard a

series GaAs FET sampling mixer very similar to that described in [4].

This implementation had been found in a literature search during
"A Transponder Study" and was considered to be the best candidate

approach for several reasons. The authors in [4] suggested that the

use of a GaAs FET as a sampling switch could reduce the power required
to drive the switch over conventional diode-implemented switch

configurations due to the high input impedance of the GaAs FET gate.
Also it was shown in [4] that the series GaAs FET configuration had

much less conversion loss than the diode implementations.

After the proposal for this project had been submitted, development
work on a Motorola IR&D, L-band sampling mixer encountered

considerable difficulty in obtaining IF bandwidths greater than

two MHz. The L-band sampling mixer was an approach similar to [4] and

did achieve a conversion loss of less than 6 dB for IF frequencies

less than one MHz using a moderate step-recovery diode (SRD) drive
power of +i0 dBm. Work on the IR&D sampling mixer ceased without

solving the IF bandwidth problem prior to the start of this project,

the narrow IF response being adequate for the application.

An X/S-band sampling mixer with approximately i00 MHz of IF bandwidth

is necessary to implement the block diagram in Figure i, which was
considered to be the most likely implementation of the CRAF/CASSINI

transponder at the time the development of the sampling mixer on this

contract was conducted. It therefore seemed prudent to find the cause

of the narrow IF bandwidth of the existing L-band design before

proceeding with a similar but more difficult X/S-band design. This

approach would provide an extra breadboard iteration as the existing
L-band breadboard was immediately available for test, providing useful
"hands on" familiarity with the circuit's operation. For these

reasons it was decided to model the L-band circuit first before

proceeding with the X/S sampling mixer development. As work progressed

it became clear that L-band was near the upper frequency limit for a

breadboard composed of conventional discrete components such as CDRI2
chip capacitors, M55342 chip resistors and packaged GaAs FETs due to

the sampling mixer's high susceptability to stray capacitances and

inductances. Thus, L-band was as close to the X/S-band implementation

as could be breadboarded with easily changeable discrete components.
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The time required to model the L-band sampling mixer and correct the
narrow IF bandwidth problem consumed considerably more time than
planned due to analysis methodology problems discussed in the next
section.

B. METHODOLOGY

The GaAs FET selected for the X/S sampling mixer breadboard was the

NEC 710, the same GaAs FET used in the L-band implementation. This

selection was based primarily on three reasons. Curtis model [5]

parameters were available from NEC so measurement of these parameters

was not required. Recent articles in the technical literature showed

the NEC 710 to have the required switching speed for an X-Band

sampling mixer [6]. The L-Band circuit was implemented with the
NEC 710.

The non-linear nature of the sampling mixer dictated the use of SPICE

based circuit analysis. Three programs using the SPICE core were tried

in an effort to reduce the long run times required to obtain one cycle

of the IF frequency so that conversion loss could be determined.

Microwave Spice on an Apollo computer was the first program to be

evaluated. This program had extremely long run times as only one time

step is allowed throughout the run. The sampling mixer LO is a series

of narrow pulses followed by long "off" times. Many small time

increments are necessary to adequately define the pulse, however, much

longer time increments can be tolerated in the "off" time to model the

decay of the voltage on the hold capacitor. Only one copy of this

program was available which had to be shared with several projects.

HSPICE on an IBM mainframe computer was evaluated next. HSPICE allows

different time steps, but requires many program lines to define the

series of time intervals for one cycle of the IF frequency. Off line

printing of graphs was also required, reducing the efficiency of this
analysis approach.

The selected methodology approach was to use an evaluation copy of

PSPICE on an IBM PS 2, model 80 computer with a math coprocessor.

PSPICE allows two different time steps in a repeating interval. The

program automatically adjusts step size according to the amount of

activity in the simulation resulting in I0 to 20 times speed

improvement over using a single step size.

Even with using the PSPICE approach, approximately 30 minutes of run

time was required to obtain a single frequency sweep (7 frequencies)

of the IF output. No automatic sweeping or optimization of

componentswas possible as with linear circuit analysis programs. Also,

manual plotting of the results was required.
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GaAs FET models for high speed switching applications are still being
debated in the literature. The case of Vds=0 (the sampling mixer
application) may not produce very accurate results as stated in
various technical articles [7]. In our simulations Cgs and Cgd were
set to zero to obtain results that best matched the breadboard
measurements.

Modelling the dynamic output impedance of the SRD drive circuit
required a significant amount of unplanned effort.

The problems described previously considerably slowed the analysis of

the L-Band circuit. However the frequency response and conversion loss
of the selected model circuit were close to the measured data.

C. L-BAND IMPLEMENTATION

The selected L-Band circuit model is shown in Figure 13. Values for

the parasitic capacitances and inductances of C4, C5, C6, C7, LD, LS,
and LD were estimated for the physical layout of the L-Band

breadboard. CHOLD and RLI are measured values for the FET probe used

to take the breadboard data. VIN and R3 represent the 50 ohm input RF

signal. VPL and RS0 represent the SRD LO source. In this model the LO

drive signal is a rectangular pulse of 212 pS duration which drives

the gate to Vgs= +0.4 volts to provide complete switching of the FET

without driving the diodes in the gate/source and gate/drain regions

into significant foward conduction. This models the actual triangular

pulse from the SRD impulse generator which is clipped by these diodes

to form the switching squarewave. No significant forward conduction

occurs in the actual circuit as the output impedance of the SRD
impulse generator is much higher than the 50 ohms used in this

simulation. The PSPICE circuit file is shown in Table i. Figure 14

showns the measured, simulated and theoretical circuit performance. As
can be seen, the measured and simulated IF flatness falls short of the

theoretical sin x /x response.

Using the equations derived in section I, part C for _ and _, values
c

of LS+LD = 4.18nH and CHOLD = 1.836pF were obtained for • = 212pS and

= 0.5. The value of _ was selected to provide a good compromise

between rise time and bandwidth of the second - order system. The

resulting simulated IF response is shown in Figure 15 using the

circuit file of Table 2. The response is significantly flatter than

that shown in Figure_. Other simulations showed the amount of peaking

in the IF response can be changed by varying _ in much the same manner

as a traditional second - order system.
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******* 09/15/89 ******* Evaluation PSpice (Jan. 1988) ******* 13:42:30 *****

Table I. L-Band Circuit Description

1 2 68PF

R1 2867

C3 8 0 68PF

R2 8 0 780

R3 9 1 50

BGAS 11 12 10 NE7101
RB 4 5 14900

CB 5 0 220PF

C2 6 4 68PF

C4 2 3 1PF

LD 10 3 1NH
LS 11 2 1NH

LG 12 4 INH

C5 1 0 .5PF

C6 2 0 .5PF

C7 4 0 .5PF

R50 6 7 50
CHOLD 3 0 5.SPF

RLI 3 0 .5MEG

V1 5 0 DC -2.27

VPL 7 0 PULSE(O 2.67 0 1PS 1PS 210PS 20NS)

VIN 9 0 SIN(O .032 1.551E9 0 0 O)

•TRAN 1NS 1010NS 0

•FOUR 1E6 V(3)

.MODEL NE7101 GASFET(VTO=-I.0 ALPHA=4.5 BETA=.055 LAMBDA=.12

+RG=2.0 N=1.5

+RD=2.37 RS=3.7 CDS=• 5PF IS=I. 88E-I0)
•OPTIONS ITL5=O

.END
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******* 09/15/89 ******* Evaluation PSpice (Jan. 1988) ******* 08:59:06 ****

**** Table 2. I_roved L-Band Clrcul't Description

CI 1 2 68PF

R1 2 8 67

C3 8 0 68PF

R2 8 0 780

R3 9 1 50

BGAS 11 12 10 NE7101

RB 4 5 14900

CB 5 0 220PF

C2 6 4 68PF

C4 2 3 1PF

LS 10 3 2.0NH

LD 11 2 .O001NH

LG 12 4 1NH

C5 1 0 .5PF

C6 2 0 .5PF

C7 4 0 .5PF

R50 6 7 50

CHOLD 3 0 1.65PF

RL1 3 0 .5MEG

V1 5 0 DC -2.27

VPL 7 0 PULSE(O 2.67 0 IPS IPS 210PS 20NS)

VIN 9 0 SIN(O .032 1.551E9 0 0 O)

.TRAN 1NS 1010NS 0

.FOUR 1E6 V(3)

.MODEL NE7101 GASFET(VTO=-I.0 ALPHA=4.5 BETA=.055 LAMBDA=. 12

+RG=2.0 N=1.5
+RD=2.37 RS=3.7 CDS=.5PF IS=1.88E-I0)

.OPTIONS ITL5=O

.END
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D. X-BAND IMPLEMENTATION

The first simulated X-Band configuration is shown in Figure 16, and

its circuit file is listed in Table 3. Using the equations derived in

section I, part C, values of LD = 1.18nH and CHOLD = 0.521pF were
obtained for T = 60 pS and _ = 0.5. It was desired to simulate the

performance of a circuit with no parasitic inductances or capacitances
as a baseline for the actual breadboard implementation. The simulated

versus theoretical responses are shown in Figure 17. Again, the

simulated IF passband is fairly flat as in the L-Band case.

At the time this effort was terminated, investigations into what

realization to breadboard had Just begun. The major problems to be

overcome were determined to be:

i. Minimization of parasitic inductances and capacitances.

2. Realization of a tunable network to align the IF passband

to be flat.

3. Realization of a high impedance load (R > 10Kohms).

A first effort to deal with the stray capacitance of a load is shown

if Figure 18. The load capacitance of 1.5pF is tuned out by LHOLD

providing the bandpass IF response of Figure 19. Since a lowpass IF

response is not required for the receiver and exciter of Figure i,

this approach could be used to allievate problems 2 and 3 above.

III. CONCLUSIONS AND RECOMMENDATIONS

The preceeding work indicates that building a manufacturable X/S

sampling mixer is possible if good solutions to the above three

problems can be found.

Minimization of parasitic inductances and capacitances to the point

necessary to implement a practical circuit would likely involve using

MIC or MMIC technology. A MIC approach is recommended due to its

significantly smaller development colt and alignment possibilities.
Model inaccuracies in the design phase would be offset by selecting

components on a breadboard sampling mixer MIC. Production units could

be aligned by changing the lengths [inductances) of bond wires in

series with the hold capacitor. Thl hold capacitor could be varied in

discrete steps by implementing it as several square pads connected in

parallel as required in alignment to obtain the flattest response.
Realization of a high impedance load is probably best implemented

using a GaAs FET source follower after the hold capacitor. A GaAs FET

has very low gate to source and gate to drain capacitances which are

much smaller than the required CHOLD.
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Table 3. X-Band Clrcu_t Description

C1 1 2 1.5PF

R1 2 0 50
R3 9 1 50

BGAS 2 4 10 NE7101

RB 4 5 14900

CB 5 0 220PF

C2 6 4 1.5PF
_*C4 2 3 1PF

LD 10 3 1.18NH

*LS 11 2 INH

*LG 12 4 1NH

*C5 I 0 .5PF

*C6 2 0 .5PF

*C7 4 0 .5PF

RSO 6 7 50

CHOLD 3 0 .521PF

RL1 3 0 .5MEG

V1 5 0 DC -2.27

VPL 7 0 PULSE(O 2.67 0 1PS 1PS 60PS 4°3392504NS)

VIN 9 0 SIN(O .032 8.503772725E9 0 0 O)
.TRAN 1NS 44NS 0

.FOUR 23.045454E6 V(3)

.MODEL NE7101GASFET(VTO=-I.0 ALPHA=4.5 BETA=.055 LAMBDA=.120

+8D=2.37 RS=3.7 RG=2.0 IS=1.88E-10 N=1.5)

.OPTIONS ITL5=O

.END
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The benefits of developing a sampling mixer MIC go far beyond deep

space transponder applications. A MIC sampling mixer developed for use

at X-Band could be used for other down-conversion applications having

different but lower RF frequencies. No redesign or realignment of the

MIC for different LO frequencies should be required if the SRD impulse

generator circuitry is kept external to the hybrid. Longer pulse

widths (acceptable at lower RF input frequencies) could also be

accomodated without redesign or realignment if a damping factor _ of

0.5 or greater is used in the original design. The sampling mixer

mayhave been aligned to provide a first zero crossing in the rise time

(see Figure 3) at a 60 pS pulse width. However, longer pulse widths

which could be used at lower RF frequencies will simply follow the

time response of Figure 12. The maximum conversion loss change will be
less than 1.5 dB due to sampling in a peak or valley of the time
response for _ > 0.5.

In conclusion Motorola recommends that a sampling mixer MIC be

developed to include as wide a range of NASA applications as possible,

including deep space and TDRSS transponders. The possibility of the LO

source being derived from digital circuitry using various sampling

strategies could yield many potential new applications for this part.

Motorola would like to thank N. Mysore of JPL for his assistance in
this project.
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APPENDIX A

Simulation Source Code



This program simulates the JPL advanced transponder. •

' It was written for the Microsoft C compiler, version 5.0. *

• Author: Mark Frank. ,

• File: simbpd.c ,

• Revision History: ,

• i) 9/30/89 - Program started ,
• 2) 10/11/89 - ,

• a) Added logical, no mod to ensure modulation is zero *

• when mod indices are small (i.e., zero). *

• b) Take the accumulated phases modulo two*pi every jcount to *
• ensure accumulated phases do not overflow. *
• 3) 10/17/89 - ,

• a) Make prnt_data an input variable •
• 4) 10/18/89 - ,

• a) Make statistic counters long integers ,
• b) Corrected error in input SNR calculation •
• 5) 10/25/89 - ,

• a) Make # of DAC bits an input variable •
• 6) 10/26/89 - ,

• a) Allow the sign of ranging filter output to be used *
• as ranging output - user selectable. •
• 7) 10/30/89 - ,

• a) Corrected error made in revision 5) *
• 8) 11/15/89 - ,

• a) Redirect stderr error messages to 'errors.dat' *
• ,

• Functions called: ,

• pll_params() : finds PLL parameters ,

• sig_noise() : finds signal amplitude for given SNR and BW *

• bpd_sig() : finds signal level out of 1 bit sampler *

• nrand() : returns zero mean, sigma=l, normal distributed r.v.*

• iir filt() : returns recursively filtered signal *
• inp_t_dbl() : user input function returns double *

• input lng() : user input function returns long *

• int_p_w() : returns integer to integer power *

• get_dbl_spc() : returns pointer to block of memory for double array*
• snr_calc() : calculates snr from mean and variance *

• savdbl() : saves double array to disk to be read by MATLAB *

• Macros called: ,

• SGN(a) : returns -I if a<0, returns 1 if a>0 *

/***************************************

* Include files: •

****************************************

#include <constant.h> /* contains constants, eg, PI */
#include <math.h>

#include <stdio.h>

#include <time.h>

#include <process.h>
#include <macros.h>

#include <gps_tap.h>

/* Microsoft math functions */

/* Microsoft i/o functions */

/* Microsoft time of day fns. */

/* Microsoft stream process fns */
/* Macro definitions */

/* PN generator definitions */



* Program control constants: *

#define DAC FILT ON 1 /* 1 for DAC filter ./

* Frequency constants: *

#define F 1

#define CAR MULT

#define VCO MULT

#define F 0

#define F VCO

#define ICOUNT

#define T I

#define F C

#define F R

#define IF BAND

9.56558642e06

5
4

(CAR_MULT*F_I)

(VCO_MULT*F_I)
4

/* Receiver assigned channel freq */

/* Carrier freq = CAR MULT*F i */

/* VCO freq = VCO MULT*F 1 */

/* Carrier frequency */

/* Nominal VCO frequency */

/* Simul sampling to actual sampling */

(I./(ICOUNT*F VCO))/* Initial Simulation time step */

16.e03 /* Command frequency */

l.e06 /* Ranging frequency */

(ICOUNT*F_VCO)/2 /* IF bandwidth in Hz, (i.e., the */
/* Nyquist rate) */

***************************************
* DDP constants: *

#define AGC REF I0000 /* AGC reference value */

#define K1 S--HIFT I0 /* # of bits to shift K1 output */

#define IN_ SHIFT i0 /* # of bits to shift interpolator*/

-- /* output */

#define INT MASK 1023 /* Mask for lower INT SHIFT bits */

* Filter constants: *

* Note: butterworth filter coefficients *

* obtained from MATLAB: *

* [b,a] = butter(2, [wl w2]); *

* where wl = (F 0-BW IF/2)/F I/2 *
* w2 = (F--0+BW--IF/2)/F--I/2 *

******************************************

#define NP IF 2 /* # of poles in IF BPF
#define NP--IF2 4 /* 2*NP IF

#define BW--IF 5.e06 /* two-sided IF filter bandwidth

double a_if[2*NP_IF+l] .. {I.,
1.4277885823307,

2.2233519046009,
1.2339387148671,

0.7480557307791} ;

double b if[2*NP IF+l] = {0.00917437395786,

0.t

-0. 01834874791572,

0.t

0. 00917437395786} ;

double xs[2*NP_IF] = {0., 0., 0., 0.};

double ys[2*NP_IF] = {0., 0., 0., 0.};

***************************************
* Command LPF: *

***************************************

#define NP CMD 4 /* # of poles in command BPF

#define BW--CMD 2.00e03

,I
,I
*I

AP2
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/* two-sided CMD filter bandwidth */



1ouble a_cmd[NP_CMD+I] = {i.,
-3.78032699055480,

5.36478799712946,

-3.38711134961993,

0.80269521883904};

double b_cmd[NP_CMD+I] = {0.02804737110451e-4,
0.I1218948442249e-4,

0.16828422661597e-4,

0.i1218948442693e-4,

0.02804737110007e-4};

double xc[NP CMD] = {0., 0., 0., 0.};

double yc[NP_CMD] = {0., 0., 0., 0.};

***************************************

* Ranging LPF: *
***************************************

#define NP RAN 4 /* # of poles in Ranging LPF */

#define BW--KAN 20e03 /* Two-sided Ranging filter bw */

double a ran[NP RAN+l] = {I.,

-3.93134345850892,

5.79637742149559,

-3.79867774172945,

0.93364423931869};

double b_ran[NP_RAN+I] = {0.02878599469902e-6,
0.i1514397835199e-6,

0.17271596952639e-6,

0.i1514397790791e-6,

0.02878599503209e-6};

double xr[NP_RAN] = {0., 0., 0., 0.};

double yr[NP_RAN] = {0., 0., 0., 0.};

***************************************

* DAC LPF: *

***************************************

#define NP DAC 2 /* # of poles in interp DAC LPF */
#define BW--DAC 100.e03 /* One-sided DAC filter bandwidth */

double a dac[NP DAC+I] = {i., -1.814679857, 0.830452347};

double b--dac[NP--DAC+I] = {0.0039431226, 0.007886245, 0.003943123};

double xd[NP_DAC] = {0., 0.};

double yd[NP_DAC] = (0., 0.};

***************************************

* Global variables: *

***************************************

FILE *output,*inf,*errstream;

extern long seed;

/* output and input files */

/* random number generator seed */

main(argc, argv)

char *argv[];

int argc;

(

/* argv[0] = output data file */

/* argv[l] = input data file */
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time t itime; /* Current time */

* Define variables: *

int

int

int

int

int

int

/* Logicals: */
int

int

ant

ant

int

ant

ant

ant

ant

ant

i,n,l,m,j,k, ii; /* Loop counters */

ncount, lcount,mcount, jcount,kcount; /* Accumulator count values */
start star; /* take statistics at this point */

adc, sa--mp_cnt; /* a/d output, mux counter */
k0 sel,kl sel; /* Carrier loop gain selects */
da_ bits;- /* # of D/A bits */

print_n;
rd file;

pr_t_data;

range_msb;

interp_on;

agc_on;
no mod;

step_phase, step_freq;

stepped;

q_sign;

/* 1 to print after ncount, else jcount*

/* 1 to read input from disk */

/* 1 to write de-bug data to disk */

/* 1 to output MSB of range only */

/* 1 for DAC interpolator */

/* 1 for AGC circuitry */

/* 1 if no phase modulation */

/* 1 to put in phase/freq step */

/* phase got stepped */

/* 1 for feed back + acc_n_q */

/* 0 for feed back - acc_n_q */

long

long

long

long

long

long

long

long

acc_n_i,acc_n_q, acc_l_q; /* Accumulated values */

acc_j_q, agc_acc, car_spe_acc, int acc;
cad out; 7* Coherent Amp. Detect output */

car--spe; */
dac in; */

num--cad_samp, num cmd_samp; */

num_range_samp, n_m_phase_samp;
itemp; /* Temporary variable */

/* Loop error

/* DAC input value

/* Number of statistic samples

/* Command and ranging subcarrier */
/* Modulation indices */

/* Signal frequencies in radians */

/* VC0 frequencies in Hz */

/* Simulation time step */

/* Signal frequencies * (time step) */

double sig, psn0_db, if snr, if_band; /* Input signal, SNRs */

double phase_cmd,phase--range; /* Accumulated signal phases */

double phase_car, phase_tot,phase_vco;

double ref_cmd_phase, ref_range_phase; /* Output mixers' phases */

double range_ref, cmd_ref;
double ct,rt;

double beta c,beta r;

double omeg_cmd, omeg_range,omeg_car;
double f vco, f vco off;
double t i;

double omeg_cmd_t,omeg_range_t;

double omeg_car t;
double f d; -- /* Doppler frequency */

double t_ car, wn car, zeta car, bl car; /* Carrier loop constants */

double da__gain,_co_gain,gain; - /* Carrier loop gain constants */

double det_gain,k0_gain, kl_gain, int_gain;
double dac out; /* DAC output value */

/* Statistical variables: */

double range_mix, cmd mix; /* Range and command mixer output*/
*/double mean_cad,meanZquad, mean_cmd; /* Output mean values

double mean range,mean_phase;

double var__ad, var_quad, var_cmd, var_range; /* 0utuput variances */

double vat_phase;

double std_cad, std_quad, std_cmd, std_range; /* Output std deviations */

double std_phase;

double snr cad, snr_cmd, snr_range; /* Output SNRs */

double snr_phase;
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double dtemp;

***************************************

* Functions (defined above): *

void pll_params();
void snr calc(),savdbl();

long inpUt_Ing();

long int_pow();

double nrand(),iir filt(),input_dbl();
double bpd_sig(),sYg_noise();

double *get_dbl_spc();

* Redirect error messages to disk: *

errstream = freopen("errors.dat","w",stderr);

* Check location of input and output *
* files: *

***************************************

if(argc == i)
{

output = fopen("jpl_sim.dat","w");
inf = stdin;

rd_file = input_ing(inf,"Get input parameters from disk(l/0) : ");
if(rd file)

inf--= fopen("jpl_in0.dat","r");
else

inf = stdin;

}
else

{
"W"output = fopen(argv[l], );

if(argc < 3)

(
rd file = 0;

inf = stdin;

}
else

(
rd file = I;

inf = fopen(argv[2],"r");
if(inf == NULL)

(
printf("Input file does not exlt\n');
exit(l);

}
!

)
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* Input simulation parameters: *

psnO_db =
seed =

phase_car =
beta c =

ref__md_phase =
beta r =

ref_?ange_phase
fd

f d *-- KHZ;

ncount
icount

mcount

jcount
kcount

start star

step_phase

interp_on

agc_on

range_msb
print n

prnt_data

q_sign
k0 sel

kl sel

dac bits

vco_gain

input_dbl(inf,"Signal-to-noise density in dB : -);

input_ing (inf, "Random number generator seed : ") ;

input_dbl(inf,"Initial carrier phase in radians : ") ;

Input_dbl (inf, "Command modulation index in radians : ") ;

input_dbl (inf, "Reference command phase in radians : ") ;

input_dbl (inf, "Range modulation index in radians : ") ;

•nput_dbl (inf, "Reference range phase in radians : ") ;

= _nput_dbl(inf,"Doppler frequency in kHz : -);

= input_lng(inf,"NCOUNT (I and Q accumulators)

= Input_ing(inf,"LCOUNT (ranging accumulator)

= input_ing(inf,"MCOUNT (interpolator divisor)

= input_Ing (inf, "JCOUNT (I accumulator)

= _nput_ing(inf,"Total number of Jcount samples

= input_ing(inf,"Statistic start (jcount samples)

= input_ing(inf,"Step input phase (i = T, 0 = F)

= _nput_ing(inf,"Interpolator on (i = T, 0 = F)

= input_ing(inf,"AGC circuits on (i = T, 0 = F)

= _nput_ing(inf,"Ranging MSB only (i = T, 0 = F)

= input_ing(inf,"Print after ncount (i = T, 0 = F)

= _nput_ing(inf,"Print phase step (i = T, 0 = F)

= input_ing(inf,"Sign of feedback (q_sign: 1,0)
= input_ing(inf,"Carrier loop gain, k0

= _nput_Ing(inf,"Carrier loop gain, kl

= input_ing(inf,"# of D/A bits

= input_dbl(inf,"VCO gain constant rad/s/volt

: ");

: ") ;

: ") ;

: ") ;

: ");

: ") ;

: ");

: ,,);

: ");

: ");

: ,,);

: ");

: ");

: ");

: ");

: ,,);

: ");

***************************************

* Get space for arrays: *
***************************************

if (prnt_dat a)
{

if (print_n)
{

tempO = get_dbl_spc(jcount*kcount);

templ = get_dbl_spc(jcount*kcount);
}
else

(

tempO = get_dbl_spc (kcount) ;

templ= get_dbl_spc (kcount) ;
)
if (templ == NULL)

exit (1) ;

)

***************************************

* Calculate Input signal level: *

***************************************

if band = IF BAND;

if_snr = sig_noise (psn0_db, if_band) ;



dac_gain = l./int_pow(2, (dacbits-l)) ;

* Calculate PLL Parameters: *
* Notes : *
* i) Detector gain = sqrt(2*P) = A; *
* 2) Loop gain = (detector gain)* *
* (vco_gain) * (dac_gain) * *
* (interpolator gain)* *
* (accumulator gain) * (shift gain) *
* 3) If k0 sel or kl sel < 0 *
* -> divide by these gains *

ts car = ncount/F 1/2;

if (agc_on)

det_gain = (double)AGC_REF/jcount;
else

(

det_gain = bpd_sig (psn0_db, ifband, BW_IF/2., I) ;
det_gain *= ncount;

}
k0_gain = (double)k0_sel;

if(kl_sel > 0)

kl_gain = (double)kl_sel/int_pow(2,Kl SHIFT);
else

kl_gain = (double)kl sel*int_pow(2,Kl SHIFT);

in, gain = i/((double)int_pow(2,INT SHIFT));
if (Ynterp_on)

gain -- det_gain*vco_gain*dac_gain* int_gain;
else

(

vco_gain *= int_gain;

gain = det_gain*vco_gain*dac_gain;
}

pll_params (gain, k0_gain, kl_gain, ts_car, &wn_car, \

&zeta_car, &bl_car) ;

* Output simulation parameters: *

time (&itime) ;

fprintf (output, "The time is : %s\n",ctime(&itime));

fprintf (output, " Input Simulation Parameters\n") ;

fprintf(output,"Signal-to-noise density in dB : %f\n",psn0 db);

fprintf (output, "Random number generator seed : %id\n",seeN) ;

fprintf (output, "Initial carrier phase in radians : %fkn",phase_car);

fprintf(output,"Command modulation index in radians: %f\n",beta_c);

fprintf (output, "Reference command phase in radians : %fkn", ref cmd_phase) ;
fprintf(output,"Range modulation index in radians

fprintf(output,"Reference range phase in radians

fprintf(output,"Doppler frequency in Hz

fprintf (output, "NCOUNT (I and Q accumulators)

fprintf (output, "LCOUNT (ranging accumulator)

fprintf (output, "MCOUNT (interpolator divisor)
fprintf(output,"JCOUNT (I accumulator)

fprintf (output, "Total number of jcount samples

fprintf (output, "Statistic start (jcount samples)

: %fkn",beta r) ;

: %f\n", ref?ange_phase) ;
: %f\n" f d);

: %d\n" n_ount) ;

• %dkn" icount) ;•

: %dkn",mcount) ;

: %d\n", Jcount) ;

: %dkn",kcount) ;

: %d\n", start_stat) ;
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fprintf(output,"Phase step input

fprintf (output, "Interpolator on
fprintf(output,"AGC circuits on

fprintf(output,"Ranging MSB only
fprintf (output, "Print after ncount

fprintf (output, "Print phase step

(i = True)

(I = True)

(I = True)

(I = True)

(I = True)

(i = True)

fprintf (output, "Sign of feedback (q_sign: 1,0)
fprintf (output, "Carrier loop gain, k0 sel

fprintf (output, "Carrier loop gain, kl--sel

fprintf(output,"# of D/A bits

fprintf(output,"VCO gain constant rad/s/volt

: %d\n", step_phase) ;
: %d\n",interp on) ;

: %d\n", agc_onT;
• %d\n" range msb) ;

: %d\n",print_n) ;

: %dkn",prnt_data) ;

: %d\n", q_sign) ;
• %d\n" k_ sel) ;

•- %d\n",kl sel);

: %d\n",da_ bits) ;

: %f\nkn",v_o_gain) ;

fprintf (output, " Secondary Parameters\n") ;

fprintf(output,"Carrier loop parameters

fprint f (output, "

fprint f (output, "

fprint f (output, "

fprint f (output, " Output Parameters\nkn") ;

fprintf(output,"Ikt Q\t AGCkt SPEkt f VCOktkt cmd out\t range err \n");

: wn = %f, zeta = %fkn",w

bl = %f, ts car = %f\n",b

det gain =--%f\n",det_gai

loop gain = %fknkn",gain)

/* Simulation time step*/

omeg_cmd

omeg_range

omeg_car
f vco

vco_gain

= TWOPI*F C;
= TWOPI*F R;

= TWOPI*(F_0+f_d);
= f vco off = F VCO;

/= TWOPI;

/* Signal frequencies */

/* Change vco gain to */
/* Hz per volt */

omeg_cmd_t

omeg_range_t

omeg_car_t

= omeg_cmd * t i;

= omeg_range * t i;

= omeg_car * t_i;

/* Mult by time step to */
/* save on calculations */

no mod

step_freq

= (fabs(beta c)<.01) && (fabs(beta r)<.01);
= (fd> i.);

***************************************

* Init agc accumulator output near *

* operating point: *
***************************************

agc_acc = AGC REF/jcount;

dtemp = ncount*bpdsig(psn0_db, ifband, BW IF/3.2,1);
if ((int) dtemp > 0)

agc_acc /= (int)dtemp;

phase_cmd

samp_cnt

num_cadsamp
acc n i

mean cad

var cad

car_spe

= phase_range = cmd mix = range mix -- 0. ;
= 0;

= num_cmdsamp = num_range samp = num_phase_samp -- 0;
= acc_n_q = cad out = acc_3_q = acc_l_q = 0;

mean_quad = mean_cmd = mean_range = mean_phase = 0. ;

= var_quad = var cmd = vat_range = vat_phase = 0.;
= car_spe_acc =--0;
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stepped = O;

* Data loop: *
**************************************/

ii = m = 1 = 0;

for(k--0; k<kcount; k++)

(
for(j=0; j<jcount; j++)

(

for(n=0; n<2*ncount; n++,m++)

{
for(i=0; i<ICOUNT; i++)

{

/* kkkkkkkkkk */

/* jjjjjjjjjj */

/* nlmnlmnlmn */

/* iiiiiiiiii */

* Generate input signal: *

if(no mod)

phase_tot = phase_car;
else

{

ct = cos(phase_cmd); /* Command modulation */
rt = cos(phase_range); /* Range modulation */

phase_tot = phase_car + beta_c*ct + beta_r*rt;
}

sig = if_snr*cos(phase_tot);

* Add noise: *

sig += nrand();

* Bandpass digital filter: *

sig = iir_filt(xs,ys, sig, a_if, b_if,NP_IF2);

* Update accumulated phases: *

phase_cmd += omeg_cmd_t;

phase_range += omeg_range_t;

phase_car += omeg_car_t;

} /* end loop on i */ /* iiiiiiiiii */

***************************************

* Mux and invert sign: *
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* Note: if samp_cnt = 0,i adc = adc *
* samp_cnt = 2,3 adc = -adc*
***************************************

switch(samp_cnt)
(

case 0:

acc n i += adc;

samp_cnt = I;
break;

case i:

acc_n_q += adc;

acc_l_q += adc;
i++;

samp_cnt = 2;
break;

case 2:

acc n i -= adc;

samp_cnt = 3;
break;

case 3:

acc_n_q -= adc;

acc_l_q -= adc;
i++;

samp_cnt = 0;
break;

default:

samp_cnt = 0;
break;

/* shouldn't get here */

* I) Check on DAC interpolator:

* 2) Update VCO output: t

if(m >= mcount)

(
if (interp_on)
(

if(int_acc > 0)

int_acc = car_spe + (int_acc & INT_MASK);
else

int acc = car_spe - ((-Int acc & INT MASK));

dac_in = SIGN_SHIFT_R(int_acc, INT_SHIFT);
)
else

(
int acc = car_spe;
dac--in = int acc;

)
dac_out = dac_gain * dac_in;
if(DAC FILT ON)

dac _ut -- = iir filt(xd, yd, dac out,a dac,b dac,NP DAC);

-- ÷-f vco--off;f vco dac--out*vco gain -- --

t--i I./_ICOUNT*__vco)-, - -- /* update sim time step

omeg_cmd_t = omeg_cmd * t i;

omeg_range_t = omeg_range "-t_i;

omeg_car_t = omeg_car * t_i;

m = -I;

./
/* Mult by time step to */
/* save on calculations */

/* reset m */
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* i) Check on ranging accumulator, *

* 2) Mix ranging with reference, LPF, *

* 3) Take ranging statistics: *

if(l > (icount-l))

(

range_ref = cos(phase_range + ref_range_phase);
if(range msb)

acc_l_ -- SGN (acc_l_q) ;
range mlx = acc 1 q'range ref;

range mix ixr_fllt(xr, yr, range_mzx,a_ran,b ran,NP RAN);

if(num_cad_samp > 0) /* start statistics ? */
{

mean_range += range_mix;

vat_range += range_mix*range_mix;
num_range_samp++;

}

acc_l_q = 0;
1 = 0;

)

/* mix to b/b and LPF: */

/* reset 1 */

} /* end loop on n */ /* nlmnlmnlmn */

* i) Accumulate I and Q channels, *

* 2) AGC outputs if requested: *
***************************************

if(agc_on)
{

cad out += acc n i*agc_acc;

acc_j_q += acc_n_q*agc_acc;
)

else

(
cad out += acc n i;

acc_j_q += acc[n[q;

****************************************

* I) Mix command with reference, LPF, *
* 2) Take command statistics: *

****************************************

cmd_ref = cos(phase_cmd + ref_cmd_phase);
cmd mix = acc n q*agc acc*cmd ref;

cmd--mix '' -- _ - --' _zzr fllt (xc, yc, cmd mlx, a cmd, b_cmd, NP_CMD) ;
if(Eum_cad_samp > 0) /* Take statistics? */
{

mean cmd += cmd mix;

var cmd += cmd mix*cmd mzx;

num_cmd_samp++;
}
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* Take VCO phase statistics: *

phase_vco = fmod(phase_car, TWOPI) ;

if (num_cadsamp > 0)
(

mean_phase += phase_vco;

vat_phase += phase_vco*phase_vco;
num_phase_samp++;

}

/* Take statistics? */

* Output Simulation variables: *

if(print_n II (j == (jcount-2)))
{

fprintf(output,"%id\t %idkt %idkt ",acc n i,acc_n_q, agc_acc);
fprintf(output,"%idkt %f\t ",car spe,phase vco);

"T-

fprintf (output, "%fkt %f\n", cmd_mzx, range_mYx) ;
if (prnt_data)
{

if (step_phase I Istep_freq)
{

temp0[ii] = phase_vco;
templ[ii++] = f vco;

}
else

(

temp0[ii] = acc_n_q;

templ[ii++] = phase_cmd;
}

}

* Carrier loop filter: *

* Note: If kl sel or k0 sel < 0, *
* divide by their--magnitudes. *

* Note: q_sign selects the sign of *
* the feedback. *

if(kl_sel > 0)

car_spe_acc += acc_n_q*kl_sel;
else

car_spe_acc -= acc_n_q/kl_sel;

itemp = SIGN SHIFT R(car_spe_acc, Kl_SHIFT);
if(k0_sel > _)

car_spe
else

car_spe

= ltemp + acc_n_q*k0_sel;

= itemp - acc_n_q/k0_sel;

if (!q_sign)

car_spe = -car_spe;



} /* end loop on j */ /, jjjjjjjjjj ,/

* Print out to inform user of progress*

printf("k = %d\n",k);

* Take accumulated phases modulo *

* 2*pi to prevent overflow *

***************************************

phase_car = fmod (phase_car, TWOPI) ;

phase_cmd = fmod (phase_cmd, TWOP I) ;

phase_range = fmod(phase_range, TWOPI);

* I) Take CAD statistics, *

* 2) Take quadrature statistics *

* 3) Input phase step if requested: *

if(k > start star)

{

mean_cad += cadout;
vat cad += cad out*cad out;

mean--quad += ace[j_q; --

var_quad += acc_j_q*acc_j_q;

num_ cadsamp++;

if (step_phase && !stepped)
{

phase_car += PI/4;
stepped = I;

}

***************************************

* Update AGC accumulator: *

if (agc_on)

agc_acc +=,AGC_KEF - cad_out;

* Dump jcount accumulators: *

cadout = acc_j_q = 0;

} /* end loop on k */ /* kkkkkkkkkk */



snr_calc (mean_cad, var_cad, num_cad_samp, &mean_cad, &std_cad, &snr_cad) ;

snr_calc (mean_quad, var_quad, num_cad_samp, &mean_quad, &std_quad, &dtemp) ;

snr_calc (mean_phase, var_phase, num_phase_samp, &mean_phase, &std_phase,

&snr_phase) ;

snr_calc (mean_cmd, var_cmd, num_cmd_samp, &mean_cmd, & std_cmd, &snr_cmd) ;

snr_calc(mean_range,var_range,num_range_samp,&mean_range,&std_range,

&snr_range);

***************************************

* Output results to disk: *
***************************************

fprint f (output, "\n") ;

time (&itime) ;

fprintf(output,"The time is : %skn",ctime (&itime)) ;

fprintf

fprintf

fprintf

(output, "Mean of CAD

(output, "Standard deviation

(output,"SNR of CAD

of CAD

: %f\n",mean cad);

: %f\n",std cad);

: %f\n\n", snr_cad) ;

fprintf (output, "Mean of quad

fprintf(output,"Standard deviation of quad
: %f\n",mean_quad) ;

: %f\n\n",std_quad) ;

fprintf (output, "Mean of Phase

fprintf (output, "Standard deviation

fprintf(output,"SNR of Phase

of Phase
: %f\n",mean_phase) ;

: %fkn", std_phase) ;

: %fknkn", snr_phase) ;

fprintf (output, "Mean of CMD

fprintf (output, "Standard deviation of

fprintf(output,"SNR of CMD

CMD
: %f\n",mean cmd) ;

: %f\n", std_cmd) ;

: %f\n\n", snr_cmd) ;

fprintf

fprintf

fprintf

(output,"Mean of ranging

(output, "Standard deviation of

(output,"SNR of ranging

ranging
: %fkn",mean_range) ;

: %fkn", std_range) ;

: %fkn", snr_range) ;

***************************************

* Close read and write files *

***************************************

if(rd file)

fclose (inf) ;

fclose (output) ;

*

*

*

*

*

*

*

*

*

*

long input_lng(inf,prompt)

file pointer input variables

inf = pointer to input file

char input variables

*prompt = pointer to prompt string
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* This routine prompts the user for an long input variable

long input_ing(inf, prompt)
FILE *inf;
char *prompt;
{

long response;
float temp;

printf ("%s", prompt) ;

fscanf (inf, "%f", &temp) ;

response = temp;

printf("%id\n",response);

return response;
}

*

* double input_dbl(inf, prompt)

file pointer input variables

inf = pointer to input file

char input variables

*prompt = pointer to prompt string

* This routlne prompts the user for a double input variable
*********************************************************************

double input_dbl(inf, prompt)
FILE *inf;

char *prompt;
{

double response;

float temp;

print f ("%s", prompt ) ;

fscanf (inf, "%f", &temp) ;

print f ("%f\n", temp) ;

double iir filt(x,y, xin, a,b,n)

double input/output variables

x[n] = input sequence

y[n] = output sequence

double input variables
m-- m

a[n+l] = denominator coefficients, a[0] = I.

bin+l] = numerator coefficients

xin = current input sample
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* This routine returns the current output of the IIR filter as

* well as updating the arrays of old output and input values.
***************************************************************

double iir filt(x,y, xin,a,b,n)

double *x,*y, xin,*a,*b;

int n;

{
double your;

int i;

your = b[0]*xin;
for(i=n; i>l ;i--)

(
your +-- b[i]*x[i-l] - a[i]*y[i-l];
x[i-l] = x[i-2];

y[i-l] = y[i-2];

}
yout += b[l]*x[0] - a[l]*y[0];

x[0] = xin;

y[0] = your;

w

void pll_params(k,kl,k2,t_s,omega_n, zeta,bl)

double input variables

k = detector gain*VCO gain

kl = loop filter proportional gain

k2 = loop filter integrator gain

t s = sample time

double output variables

omega_n = closed loop natural frequency
zeta = closed loop damping constant

bl = closed loop one-sided noise bandwidth in Hz

This routine calculates the closed loop parameters of the digital

phase-locked loop. The loop parameters are based on D. Boman's
thesis page 16. The noise bandwidth is taken from R. Ziemer and

R. Peterson, Digital Communications and Spread Spectrum Systems,
Table 5-1.

*******************************************************************

void pll_params (k, kl, k2, t_s, omega_n, zeta, bl)
double k, kl,k2,t s;

double *omega_n,*zeta,*bl;
{

double temp;
if(kl < 0.)

kl = -l./kl;

if(k2 <0.)

k2 = -l./k2;

temp = k'k2;

*omega_n = sqrt(temp/t_s);

*zeta = k*kl/2./(*omega_n);

temp = *zeta + 0.25/(*zeta);
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*bl = 0.5* (*omega_n) *temp;

double sig_noise (snr_db,bw)

input double variables

snr_db = input signal/noise density in dB/Hz

* bw = if bandwidth = Nyquist frequency in Hz

* This routine returns the signal level given the input SNR density.
* It is assumed that the noise to be generated has

* sigma = N0*bw = 1

* Also the input SNR is given by
* SNR = A**2/(2*N0*bw)

double sig_noise(snr_db,bw)

double snr_db,bw;
{

double dtemp, signal;

dtemp = pow(10.,snr db/10.);

signal = sqrt (2.*dte--mp/bw) ;

return signal;
}

* void snr_calc(mean,var,n,&smean,&std,&snr)

double input variables

mean = sum of samples

var = sum of samples**2

long input variables

n = total # of samples

double output variables

*smean = sample mean

*std = standard deviation of sample mean
*snr = signal-to-noise in dB

This routine calculates the SNR using the sample mean.

**************************************************************

void snr_calc(mean,var, n,smean, std, snr)
double mean,var;

long n;

double *smean,*std,*snr;
(

double temp;

temp = n*var - mean*mean;

*std = sqrt(fabs(temp/n/(n-1)));
*smean = mean/n;

if(*std > 0.)
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*snr = 20.* (logl0(fabs (*smean)/(*std))) ;
else

*snr = 0. ;

****************************************************************

* double bpd_sig (psn0, if_band, bw, ideal)
w

double input variables

psn0 = input signal to noise density in dB-Hz
if band = one sided IF bandwidth in Hz

bw = one sided band pass pre-filter bandwidth in Hz

int input variables

ideal = 1 for ideal LPF

= 0 for one pole LPF

* This routine calculates the signal level out of

* a hard limiter following a band pass filter.
* This routine assumes that n 0*if band = i;

double bpd_sig (psn0, if_band, bw, ideal)

double psn0, if_band, bw;
int ideal;

(
double s, n_0, sigma2, sigma, mean_bpd;
double qx();

/*

* Convert decibels to absolute values

*/
psn0 /= I0.;

psn0 = pow(10.,psn0);

/*

* Find signal amplitude assuming n 0*if band = i:

*/
S = 2.*psn0/if band;

s = sqrt(s);
n 0 = l./if band;

/*

* Find noise out of BPF:

*/
if(ideal)

sigma2 = n_0*bw*2.;
else

sigma2 = n 0*bw*PI;

sigma = sqrt(sigma2);

/*

* Now find mean signal value out of limiter
*/

mean_bpd -- I. - 2.*qx(s/sigma) ;

return mean_bpd;



* double nrand()
J

* implicit long input variables

* seed = initial seed

* This routine returns a normally distributed random variable N(0,1)

* from the uniform random number generator urand(), using the

* the algorithm described in [FOR77] G.E. Forsythe, M.A. Malcolm,

* and C.B. Moler, Computer Methods for Mathematical Computations,

* Englewood Cliffs: Prentice-Hall, p. 247, 1977.

double nrand()

{
double ul,u2,vl,v2,s, ln s;

double sqrt ins,x;
double urand();

s = 2.;

while(s > I.)

{
ul = urand ();
u2 = urand();

vl = ul + ul - I;
v2 = u2 + u2 - i;

s = vl*vl + v2*v2;

}
in s = log(s);

sqrt_ins -- sqrt(-(In_s+in_s)/s);

x = vl*sqrt_ins;
return x;

}

* double urand()

implicit long input variables

seed = initialize seed the first time this routine is
called.

This routine generates a random number in [0, I] based on

the algorithm given in [PAR88] S.K. Park and K.W. Miller,

"Random numver generators: good ones are hard to find,"

Comm. ACM, vol. 32, no. i0, pp. 1192-1201, Oct. 1988.

***************************************************************

#define A 16807

#define M 2147483647

#define Q 127773 /* M div A */

#define R 2836 /* m mod A */
double urand()

{
long Io, hi, test;

double rand;

hi = seed/Q;

io = seed%Q;
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test = A*lo - R'hi;

if(test > 0)
seed = test;

else
seed = test + M;

rand = (double)seed/M;

return rand;

}

* double qx(x)

* double input variables
.

* x = real argument

* this routine finds the q function for a real argument, by

* calling the routines qx0(small arg), qxl(moderate arg),

* qx2(large arg).

****************************************************************

#define XLARGE 4

double qx(x)
double x;

{
double y;

double qxl(),qx2();

int neg;

neg = (x < 0.);
if (neg)

x = -x;

if (x < XLARGE)

y = qxl (x) ;
else

y = qx2 (x) ;

if (neg)

y = i. - y;

return y;
}
*******************************************************************

* double qxl(x)
*

* double input variables
*

* x = real argument

* this routine finds the q function for moderate values of x,

* see: digital communications and spread spectrum systems, by

* ziemer and peterson, p. 714.

#define P 0.2316419

#define B1 0.319381530

#define B2 -0.356563782

#define B3 1.781477937

#define B4 -1.821255978
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define B5 1.330274429

double qxl(x)
double x;
(

double t,z,z2,x2,y;

x2 = x'x;

z = exp (-x2/2.)/SQRT2PI;
t = i./(i + P'x);

y = z*(t*(Bl + t*(B2 + t*(B3 + t*(B4 + t'B5)))));

return y;
}

* double qx2(x)

* real input variables

* x = real argument

* this routine finds the q function for large values of x,

* see: digital communications and spread spectrum systems, by
* ziemer and peterson, p. 714.

#define XL I0.

double qx2(x)
double x;

{
double x2,z,y;

if(x > XL)

y= 0.;
else

(
x2 = x'x;

Z = exp (-x2/2.)/SQRT2PI;

y = z*(l.-l./x2 + 3./(x2*x2) - 15./(x2*x2*x2))/x;
}
return y;

}
****************************************************************

long int_pow(i,n)

int input variables

i = argument

n = power

This function returns i to the nth power.

***************************************************************
long int_pow (i, n)
int i, n;

{
long pow;

pow = I;
while(n>0)

(
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pow *= i;
n--;

}
return pow;

}

Header file that contains commonly used constants.

4/14/89

PURPOSE:

Defines commonly used constants, such as pi.

DEPENDENCIES:

none

USAGE:

invoke with preprocessor directive:
#include "constant.h"

or

#include <constant.h>

near the beginning of the program.

#define LINT ARGS 1

#define UINT-- unsigned int

#define ULONG unsigned long
#define RAD DEG 0.01745329

m

#define PI
#define PI2

#define PI4

#define PI34

#define SQRTPI

#define SQRT2

#define SQRT3

3.141592654

1.570796327

0.7853981635

2.356194491

1.772453851

1.414213562

1.732050808

#define SQRT2PI 2.506628275

#define ONESQRT2 .7071067814

#define LOG2 .6931471806

#define TWOPI 6.283185307

#define TWODPI .6366197723

#define MHZ l.e06

#define KHZ l.e03

/* PI/180. */

I* PIi2 *I
/* PI/4 */

/* 3"PI/4 */

/* sqrt(pi) */

/* sqrt(2) */

/* sqrt(3) */

/* sqrt(2*pi) */

/* i/sqrt(2) */

/* in(2) */

/* 2*pi */

/* 2/pi */

9/28/89

PURPOSE:

Performs in-line a number of useful chores.

DEPENDENCIES:

none

USAGE:

invoke with preprocessor directive:
#include "macros.h"

or

#include <macros.h>

near the beginning of the program.
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/* signum functions */

#define SGN(a) (((a)>=0) ? 1 : -i )

#define SGN01(a) (((a)>=0) ? 1 : 0 )

/* Signed shift */

#define SIGN SHIFT R(IN, SHIFT) ( (IN >= 0) ? (IN >> SHIFT) : -((-IN >> SHIFT)) )

/* Inc modulo */

#define INC MOD(a,modlen) a++; a%= modlen
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